Abstract
We address the problem of semantic segmentation of objects in weakly supervised setting, when only image-wide labels are available. We describe an image with a set of pre-trained convolutional features and embed this set into a Fisher vector. We apply the learned image classifier on the set of all image regions and propagate the region scores back to the pixels. Compared to the alternatives the proposed method is simple, fast in inference, and especially in training. The method displays very good performance of on two standard semantic segmentation benchmarks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arbeláez, P., Pont-Tuset, J., Barron, J., Marques, F., Malik, J.: Multiscale combinatorial grouping. In: CVPR (2014)
Boix, X., Gonfaus, J.M., van de Weijer, J., Bagdanov, A.D., Gual, J.S., Gonzàlez, J.: Harmony potentials - fusing global and local scale for semantic image segmentation. IJCV (2012)
Cimpoi, M., Maji, S., Kokkinos, I., Vedaldi, A.: Deep filter banks for texture recognition, description, and segmentation. IJCV 1–30 (2016)
Cinbis, R.G., Verbeek, J., Schmid, C.: Weakly supervised object localization with multi-fold multiple instance learning. In: PAMI (2016)
Csurka, G., Perronnin, F.: An efficient approach to semantic segmentation. IJCV (2011)
Dai, J., He, K., Sun, J.: BoxSup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In: ICCV (2015)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)
Everingham, M., Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. IJCV (2010)
Hong, S., Noh, H., Han, B.: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation. CoRR abs/1506.04924 (2015)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)
Lampert, C.H., Blaschko, M.B., Hofmann, T.: Efficient subwindow search: a branch and bound framework for object localization. In: PAMI (2009)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)
Papandreou, G., Chen, L., Murphy, K.P., Yuille, A.L.: Weakly- and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: ICCV (2015)
Pathak, D., Krähenbühl, P., Darrell, T.: Constrained convolutional neural networks for weakly supervised segmentation. In: ICCV (2015)
Pathak, D., Shelhamer, E., Long, J., Darrell, T.: Fully convolutional multi-class multiple instance learning. In: ICLR Workshop (2015)
Perronnin, F., Sánchez, J., Mensink, T.: Improving the Fisher Kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010)
Pinheiro, P.O., Collobert, R.: From image-level to pixel-level labeling with convolutional networks. In: CVPR (2015)
Ramachandran, S., Mooney, R.J.: Revising Bayesian network parameters using backpropagation. In: ICNN (1996)
Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)
Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J.J.: Image classification with the fisher vector: theory and practice. IJCV (2013)
Shotton, J., Winn, J.M., Rother, C., Criminisi, A.: Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. IJCV (2009)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)
Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective search for object recognition. IJCV (2013)
Xu, J., Schwing, A.G., Urtasun, R.: Learning to segment under various forms of weak supervision. In: CVPR (2015)
Zadrija, V., Krapac, J., Verbeek, J.J., Segvic, S.: Patch-level spatial layout for classification and weakly supervised localization. In: GCPR (2015)
Zhang, W., Zeng, S., Wang, D., Xue, X.: Weakly supervised semantic segmentation for social images. In: CVPR (2015)
Acknowledgement
This work has been fully supported by Croatian Science Foundation under the project I-2433-2014.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Krapac, J., Šegvić, S. (2016). Weakly-Supervised Semantic Segmentation by Redistributing Region Scores Back to the Pixels. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-45886-1_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45885-4
Online ISBN: 978-3-319-45886-1
eBook Packages: Computer ScienceComputer Science (R0)