Abstract
This paper presents a method to generate a meaningful confidence measurement during online real-time egomotion estimation of a vehicle using a monocular camera. This confidence measurement should give the information whether the signal fulfills a certain accuracy range in all parameters or not. For that reason features from an optical flow field incorporating the egomotion error are determined and a confidence measurement is learned using ground truth egomotion data that we obtain from an offline bundle adjustment before. We show that our confidence measurement gives reliable results and can further be used to filter the egomotion estimation using a Kalman filter. Incorporating the knowledge of the egomotion accuracy determined by the confidence we are able to update the confidence measure for the filtered results. This leads to an improved system availability.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, A., Chellappa, R.: Robust ego-motion estimation and 3-D model refinement using surface parallax. IEEE Trans. Image Process. 15(5), 1215–1225 (2006)
Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. ACM (1992)
Bouguet, J.Y.: Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm. Intel Corporation 5, 1–10 (2001)
Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accuracy and its posterior distribution. In: 20th International Conference on Pattern Recognition (ICPR), pp. 3121–3124. IEEE (2010)
Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)
Chen, Y.W., Lin, C.J.: Combining SVMs with various feature selection strategies. In: Guyon, I., Nikravesh, M., Gunn, S., Zadeh, L.A. (eds.) Feature Extraction, pp. 315–324. Springer, Heidelberg (2006)
Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Goecke, R., Asthana, A., Pettersson, N., Petersson, L.: Visual vehicle egomotion estimation using the fourier-mellin transform. In: 2007 IEEE Intelligent Vehicles Symposium, pp. 450–455. IEEE (2007)
Guo, G., Fu, Y., Dyer, C.R., Huang, T.S.: Head pose estimation: classification or regression?. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4. IEEE (2008)
Haeusler, R., Nair, R., Kondermann, D.: Ensemble learning for confidence measures in stereo vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 305–312 (2013)
Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN: 0521540518
Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35(1), 73–101 (1964)
Jaegle, A., Phillips, S., Daniilidis, K.: Fast, robust, continuous monocular egomotion computation. arXiv preprint (2016). arXiv:1602.04886
Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME-J. Basic Eng. 82(Series D), 35–45 (1960)
Kondermann, C., Kondermann, D., Jähne, B., Garbe, C.S.: An adaptive confidence measure for optical flows based on linear subspace projections. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 132–141. Springer, Heidelberg (2007)
Lessmann, S., Siegemund, J., Meuter, M., Westerhoff, J., Pauli, J.: Improving robustness for real-time vehicle egomotion estimation. In: Intelligent Vehicles Symposium (2016)
Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2(2), 164–168 (1944). JSTOR
Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)
Motten, A., Claesen, L., Pan, Y.: Binary confidence evaluation for a stereo vision based depth field processor SoC. In: 2011 First Asian Conference on Pattern Recognition (ACPR), pp. 456–460. IEEE (2011)
Musleh, B., Martin, D., de la Escalera, A., Guinea, D.M., Garcia-Alegre, M.C.: Estimation and prediction of the vehicle’s motion based on visual odometry and Kalman filter. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P., Zemčík, P. (eds.) ACIVS 2012. LNCS, vol. 7517, pp. 491–502. Springer, Heidelberg (2012)
Neufeld, A., Berger, J., Becker, F., Lenzen, F., Schnörr, C.: Estimating vehicle ego-motion and piecewise planar scene structure from optical flow in a continuous framework. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS, vol. 9358, pp. 41–52. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24947-6_4
Pink, O., Moosmann, F., Bachmann, A.: Visual features for vehicle localization and ego-motion estimation. In: 2009 IEEE Intelligent Vehicles Symposium, pp. 254–260. IEEE (2009)
Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. In: ACM transactions on graphics (TOG), vol. 25, pp. 835–846. ACM (2006)
Society of Automotive Engineers. Vehicle Dynamics Committee: Vehicle Dynamics Terminology: SAE J670e: Report of Vehicle Dynamics Committee Approved July 1952 and Last Revised July 1976. Handbook supplement, Society of Automotive Engineers (1978)
Stein, G.P., Mano, O., Shashua, A.: A robust method for computing vehicle ego-motion. In: Proceedings of the IEEE Intelligent Vehicles Symposium, IV 2000, pp. 362–368. IEEE (2000)
Torr, P.H., Zisserman, A.: MLESAC: a new robust estimator with application to estimating image geometry. Comput. Vis. Image Underst. 78(1), 138–156 (2000)
Vapnik, V.N., Vapnik, V.: Statistical Learning Theory, vol. 1. Wiley, New York (1998)
Weydert, M.: Model-based ego-motion and vehicle parameter estimation using visual odometry. In: 2012 16th IEEE Mediterranean Electrotechnical Conference (MELECON), pp. 914–919. IEEE (2012)
Yamaguchi, K., Kato, T., Ninomiya, Y.: Vehicle ego-motion estimation and moving object detection using a monocular camera. In: 18th International Conference on Pattern Recognition, ICPR 2006, vol. 4, pp. 610–613. IEEE (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Lessmann, S., Westerhoff, J., Meuter, M., Pauli, J. (2016). Learning a Confidence Measure for Real-Time Egomotion Estimation. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-45886-1_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45885-4
Online ISBN: 978-3-319-45886-1
eBook Packages: Computer ScienceComputer Science (R0)