Abstract
In this paper, we investigate how to predict attributes of chimpanzees such as identity, age, age group, and gender. We build on convolutional neural networks, which lead to significantly superior results compared with previous state-of-the-art on hand-crafted recognition pipelines. In addition, we show how to further increase discrimination abilities of CNN activations by the Log-Euclidean framework on top of bilinear pooling. We finally introduce two curated datasets consisting of chimpanzee faces with detailed meta-information to stimulate further research. Our results can serve as the foundation for automated large-scale animal monitoring and analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-Euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006)
Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade, 2nd edn. LNCS, vol. 7700, pp. 421–436. Springer, Heidelberg (2012)
Branson, S., Van Horn, G., Belongie, S., Perona, P.: Improved bird species categorization using pose normalized deep convolutional nets. In: British Machine Vision Conference (BMVC) (2014)
Carreira, J., Caseiro, R., Batista, J., Sminchisescu, C.: Free-form region description with second-order pooling. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 37(6), 1177–1189 (2015)
Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: British Machine Vision Conference (BMVC) (2014)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255 (2009)
Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library for large linear classification. J. Mach. Learn. Res. (JMLR) 9, 1871–1874 (2008). http://www.csie.ntu.edu.tw/~cjlin/liblinear/
Freytag, A., Rodner, E., Darrell, T., Denzler, J.: Exemplar-specific patch features for fine-grained recognition. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 144–156. Springer, Heidelberg (2014)
Göring, C., Rodner, E., Freytag, A., Denzler, J.: Nonparametric part transfer for fine-grained recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2489–2496 (2014)
He, X., Niyog, P.: Locality preserving projections. In: Neural Information Processing Systems (NIPS), vol. 16, p. 153 (2004)
He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 27(3), 328–340 (2005)
Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report, pp. 07–49. University of Massachusetts, Amherst (2007)
Hughes, B., Burghardt, T.: Automated identification of individual great white sharks from unrestricted fin imagery. In: British Machine Vision Conference (BMVC), pp. 92.1–92.14 (2015)
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: ACM International Conference on Multimedia, pp. 675–678 (2014)
Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress, W.J., Lopez, I.C., Soares, J.V.B.: Leafsnap: a computer vision system for automatic plant species identification. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 502–516. Springer, Heidelberg (2012)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition. In: IEEE International Conference on Computer Vision (ICCV), pp. 1449–1457 (2015)
Loos, A.: Identification of great apes using gabor features and locality preserving projections. In: ACM International Workshop on Multimedia Analysis for Ecological Data, pp. 19–24. ACM (2012)
Loos, A., Ernst, A.: An automated chimpanzee identification system using face detection and recognition. EURASIP J. Image Vid. Process. 2013(1), 1–17 (2013)
Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Le, Q.V., Ng, A.Y.: On optimization methods for deep learning. In: International Conference on Machine Learning (ICML), pp. 265–272 (2011)
O’Connell, A.F., Nichols, J.D., Karanth, K.U.: Camera Traps in Animal Ecology: Methods and Analyses. Springer, Japan (2010)
Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: British Machine Vision Conference (BMVC) (2015)
Rowcliffe, J.M., Carbone, C.: Surveys using camera traps: are we looking to a brighter future? Anim. Conserv. 11(3), 185–186 (2008)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)
Simon, M., Rodner, E.: Neural activation constellations: unsupervised part model discovery with convolutional networks. In: IEEE International Conference on Computer Vision (ICCV) (2015)
Simonyan, K., Vedaldi, A., Zisserman, A.: Learning local feature descriptors using convex optimisation. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 36(8), 1573–1585 (2014)
Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1701–1708 (2014)
Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. (TIP) 19(6), 1635–1650 (2010)
Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 586–591 (1991)
Tuzel, O., Porikli, F., Meer, P.: Pedestrian detection via classification on riemannian manifolds. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 30(10), 1713–1727 (2008)
Vié, J.C., Hilton-Taylor, C., Stuart, S.N.: Wildlife in a changing world: an analysis of the 2008 IUCN Red List of threatened species. IUCN (2009)
Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 31(2), 210–227 (2009)
Yang, M., Zhang, L.: Gabor feature based sparse representation for face recognition with gabor occlusion dictionary. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 448–461. Springer, Heidelberg (2010)
Zhang, N., Donahue, J., Girshick, R., Darrell, T.: Part-based R-CNNs for fine-grained category detection. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I. LNCS, vol. 8689, pp. 834–849. Springer, Heidelberg (2014)
Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)
Acknowledgements
The authors thank Dr. Tobias Deschner for providing the images which were used to build the C-Tai dataset, Laura Aporius and Karin Bahrke for collecting and annotating the images which were used to build the C-Zoo dataset, and the Zoo Leipzig for providing permission for image collection. The images used for creating the C-Zoo dataset were collected as part of the SAISBECO project funded by the Pact for Research and Innovation between the Max Planck Society and the Fraunhofer-Gesellschaft. Part of this research was supported by grant RO 5093/1-1 of the German Research Foundation (DFG) and by a grant from the Robert-Bosch-Stiftung.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Freytag, A., Rodner, E., Simon, M., Loos, A., Kühl, H.S., Denzler, J. (2016). Chimpanzee Faces in the Wild: Log-Euclidean CNNs for Predicting Identities and Attributes of Primates. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-45886-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45885-4
Online ISBN: 978-3-319-45886-1
eBook Packages: Computer ScienceComputer Science (R0)