Abstract
Detection, segmentation, and quantification of individual cell nuclei is a standard task in biomedical applications. Due to the increasing volume of acquired image data, it is not possible to rely on manual labeling and object counting. Instead, automated image processing methods have to be applied. Especially in three-dimensional data, one of the major challenges is the separation of touching cell nuclei in densely packed clusters. In this paper, we propose a method for automated detection and segmentation of immunostained cell nuclei in ultramicroscopy images. Our algorithm utilizes interactive learning and voxel classification to obtain a foreground segmentation and subsequently performs the splitting process for each cluster using a multi-step watershed approach. We have evaluated our results using reference images manually labeled by domain experts and compare our approach to state-of-the art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
The FARSight toolkit. http://www.farsight-toolkit.org
Al-Kofahi, Y., Lassoued, W., Lee, W., Roysam, B.: Improved automatic detection and segmentation of cell nuclei in histopathology images. IEEE Trans. Biomed. Eng. 57(4), 841–852 (2010)
Bergeest, J.P., Rohr, K.: Segmentation of cell nuclei in 3D microscopy images based on level set deformable models and convex minimization. In: 11th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 637–640 (2014)
Daněk, O., Matula, P., Ortiz-de-Solórzano, C., Muñoz-Barrutia, A., Maška, M., Kozubek, M.: Segmentation of touching cell nuclei using a two-stage graph cut model. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 410–419. Springer, Heidelberg (2009)
Fehr, J., Ronneberger, O., Kurz, H., Burkhardt, H.: Self-learning segmentation and classification of cell-nuclei in 3D volumetric data using voxel-wise gray scale invariants. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 377–384. Springer, Heidelberg (2005)
Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15(1), 3133–3181 (2014)
Gertych, A., Ma, Z., Tajbakhsh, J., Velásquez-Vacca, A., Knudsen, B.S.: Rapid 3-D delineation of cell nuclei for high-content screening platforms. Comput. Biol. Med. 69, 328–338 (2016)
Harder, N., Bodnar, M., Eils, R., Spector, D.L., Rohr, K.: 3D segmentation and quantification of mouse embryonic stem cells in fluorescence microscopy images. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 216–219 (2011)
Indhumathi, C., Cai, Y., Guan, Y., Opas, M.: An automatic segmentation algorithm for 3D cell cluster splitting using volumetric confocal images. J. Microsc. 243(1), 60–76 (2011)
Lin, G., Adiga, U., Olson, K., Guzowski, J.F., Barnes, C.A., Roysam, B.: A hybrid 3D watershed algorithm incorporating gradient cues and object models for automatic segmentation of nuclei in confocal image stacks. Cytometry Part A 56(1), 23–36 (2003)
Mathew, B., Schmitz, A., Muñoz-Descalzo, S., Ansari, N., Pampaloni, F., Stelzer, E., Fischer, S.: Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with lines-of-sight decomposition. BMC Bioinform. 16(1), 1–14 (2015)
Mertz, J.: Optical sectioning microscopy with planar or structured illumination. Nat. Methods 8(10), 811–819 (2011)
Meyer-Spradow, J., Ropinski, T., Mensmann, J., Hinrichs, K.H.: Voreen: a rapid-prototyping environment for ray-casting-based volume visualizations. IEEE Comput. Graphics Appl. (Appl. Dept.) 29(6), 6–13 (2009)
Ollion, J., Cochennec, J., Loll, F., Escudé, C., Boudier, T.: TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics 29(14), 1840–1841 (2013)
Osma-Ruiz, V., Godino-Llorente, J.I., Sáenz-Lechón, N., Gómez-Vilda, P.: An improved watershed algorithm based on efficient computation of shortest paths. Pattern Recogn. 40(3), 1078–1090 (2007)
Qi, J.: Dense nuclei segmentation based on graph cut and convexity-concavity analysis. J. Microsc. 253(1), 42–53 (2014)
Reynaud, E.G., Peychl, J., Huisken, J., Tomancak, P.: Guide to light-sheet microscopy for adventurous biologists. Nat. Methods 12(1), 30–34 (2015)
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012)
Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1), 146–168 (2004)
Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Heidelberg (2003)
Sommer, C., Straehle, C.N., Köthe, U., Hamprecht, F.A.: Ilastik: interactive learning and segmentation toolkit. In: 8th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 230–233. IEEE (2011)
Stelzer, E.H.K.: Light-sheet fluorescence microscopy for quantitative biology. Nat. Methods 12(1), 23–26 (2015)
Tek, F.B., Kroeger, T., Mikula, S., Hamprecht, F.A.: Automated cell nucleus detection for large-volume electron microscopy of neural tissue. In: 11th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 69–72 (2014)
Wählby, C., Sintorn, I.M., Erlandsson, F., Borgefors, G., Bengtsson, E.: Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J. Microsc. 215(1), 67–76 (2004)
Wienert, S., Heim, D., Saeger, K., Stenzinger, A., Beil, M., Hufnagl, P., Dietel, M., Denkert, C., Klauschen, F.: Dense nuclei segmentation based on graph cut and convexity-concavity analysis. Sci. Rep. 2, 503–510 (2012)
Yokomizo, T., Yamada-Inagawa, T., Yzaguirre, A.D., Chen, M.J., Speck, N.A., Dzierzak, E.: Whole-mount three-dimensional imaging of internally localized immunostained cells within mouse embryos. Nat. Protoc. 7(3), 421–431 (2012)
Acknowledgments
This work has been partly supported by the Deutsche Forschungsgemeinschaft, CRC 656 “Cardiovascular Molecular Imaging”. The images in this paper have been rendered using the framework Voreen [13].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Scherzinger, A., Kleene, F., Dierkes, C., Kiefer, F., Hinrichs, K.H., Jiang, X. (2016). Automated Segmentation of Immunostained Cell Nuclei in 3D Ultramicroscopy Images. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-45886-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-45885-4
Online ISBN: 978-3-319-45886-1
eBook Packages: Computer ScienceComputer Science (R0)