Skip to main content

Hybrid Teams: Flexible Collaboration Between Humans, Robots and Virtual Agents

  • Conference paper
  • First Online:
Multiagent System Technologies (MATES 2016)

Abstract

With the increasing capabilities of agents using Artificial Intelligence, an opportunity opens up to form team like collaboration between humans and artificial agents. This paper describes the setting-up of a Hybrid Team consisting of humans, robots, virtual characters and softbots. The team is situated in a flexible industrial production. The work presented here focuses on the central architecture and the characteristics of the team members and components. To achieve the overall team goals, several challenges have to be met to find a balance between autonomous behaviors of individual agents and coordinated teamwork.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bargsten, V., de Gea Fernández, J.: COMPI: development of a 6-DOF compliant robot arm for human-robot cooperation. In: Proceedings of the International Workshop on Human-Friendly Robotics. Technische Universität München (TUM) (2015)

    Google Scholar 

  2. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Chen, T., Borth, D., Darrell, T., Chang, S.F.: DeepSentiBank: visual sentiment concept classification with deep convolutional neural networks. arXiv preprint (2014). arXiv:1410.8586

  4. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Marin-Jimenez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2014)

    Article  Google Scholar 

  5. Gasic, M., Young, S.J.: Gaussian processes for POMDP-based dialogue manager optimization. IEEE/ACM Trans. Audio Speech Lang. Process. 22(1), 28–40 (2014)

    Article  Google Scholar 

  6. Grosz, B.J., Hunsberger, L., Kraus, S.: Planning and acting together. AI Mag. 20(4), 23–34 (1999)

    Google Scholar 

  7. Harada, T., Mori, T., Sato, T.: Development of a tiny orientation estimation device to operate under motion and magnetic disturbance. Int. J. Robot. Res. 26, 547–559 (2007)

    Article  Google Scholar 

  8. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2 web ontology language primer, 2nd edn. Technical report, W3C (2012)

    Google Scholar 

  9. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  10. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the International Conference on Multimedia, pp. 675–678. ACM (2014)

    Google Scholar 

  11. Johnson, M., Bradshaw, J.M., Feltovich, P.J., Jonker, C.M., van Riemsdijk, B., Sierhuis, M.: The fundamental principle of coactive design: interdependence must shape autonomy. In: De Vos, M., Fornara, N., Pitt, J.V., Vouros, G. (eds.) COIN 2010. LNCS, vol. 6541, pp. 172–191. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Johnson, M., Bradshaw, J.M., Feltovich, P.J., Jonker, C.M., van Riemsdijk, M.B., Sierhuis, M.: Coactive design: designing support for interdependence in joint activity. J. Hum.-Rob. Interact. 3(1), 43–69 (2014)

    Article  Google Scholar 

  13. Joyeux, S., Albiez, J.: Robot development: from components to systems. In: Proceedings of National Conference on Control Architectures of Robots (2011)

    Google Scholar 

  14. Joyeux, S., Kirchner, F., Lacroix, S.: Managing plans: integrating deliberation and reactive execution schemes. Robot. Auton. Syst. 58(9), 1057–1066 (2010)

    Article  Google Scholar 

  15. Joyeux, S., Schwendner, J., Roehr, T.M.: Modular software for an autonomous space rover. In: Proceedings of the International Symposium on AI, Robotics and Automation in Space. i-SAIRAS, p. 8 (2014)

    Google Scholar 

  16. Judd, T., Ehinger, K., Durand, F., Torralba, A.: Learning to predict where humans look. In: Proceedings of the International Conference on Computer Vision, pp. 2106–2113. IEEE (2009)

    Google Scholar 

  17. Jung, Y., Kang, D., Kim, J.: Upper body motion tracking with inertial sensors. In: Proceedings of the International Conference on Robotics and Biomimetics, pp. 1746–1751. IEEE (2010)

    Google Scholar 

  18. Kagermann, H., Helbig, J., Hellinger, A., Wahlster, W.: Recommendations for implementing the strategic initiative INDUSTRIE 4.0: securing the future of German manufacturing industry; final report of the industrie 4.0 working group. Acatech - National Acadamy of Science and Engineering (2013)

    Google Scholar 

  19. Klein, F., Spieldenner, T., Sons, K., Slusallek, P.: Configurable instances of 3D models for declarative 3D in the web. In: Proceedings of the International Conference on 3D Web Technologies, pp. 71–79. ACM (2014)

    Google Scholar 

  20. Krieger, H.U.: An efficient implementation of equivalence relations in OWL via rule and query rewriting. In: Proceedings of the International Conference on Semantic Computing (ICSC 2013), pp. 260–263. IEEE (2013)

    Google Scholar 

  21. Krieger, H.U.: Integrating graded knowledge and temporal change in a modal fragment of OWL. In: van den Herik, J., Filipe, J. (eds.) Agents and Artificial Intelligence. Springer, Berlin (2016, in press)

    Google Scholar 

  22. Larsson, S., Traum, D.R.: Information state and dialogue management in the TRINDI dialogue move engine toolkit. Nat. Lang. Eng. 6(3&4), 323–340 (2000)

    Article  Google Scholar 

  23. Leitão, P.: Agent-based distributed manufacturing control: a state-of-the-art survey. Eng. Appl. Artif. Intell. 22(7), 979–991 (2009)

    Article  Google Scholar 

  24. Lemburg, J., Mronga, D., Aggarwal, A., de Gea Fernández, J., Ronthaler, M., Kirchner, F.: A robotic platform for building and exploiting digital product memories. In: Wahlster, W. (ed.) SemProM - Foundations of Semantic Product Memories for the Internet of Things. Cognitive Technologies, pp. 91–106. Springer, Berlin (2013)

    Google Scholar 

  25. Levesque, H.J., Cohen, P.R., Nunes, J.H.T.: On acting together. In: Proceedings of the International Conference on AI, vol. 1, pp. 94–99. AAAI Press, Boston (1990)

    Google Scholar 

  26. Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S.: Anytime search in dynamic graphs. Artif. Intell. 172(14), 1613–1643 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, L., Shell, D.A.: Optimal market-based multi-robot task allocation via strategic pricing. In: Robotics: Science and Systems IX (2013)

    Google Scholar 

  28. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  29. Mourkani, S.S., Bleser, G., Schmitz, N., Stricker, D.: A low-cost and light-weight motion tracking suit. In: Proceedings of the International Conference on Ubiquitous Intelligence and Computing, pp. 474–479. IEEE (2013)

    Google Scholar 

  30. Nguyen, M.H., Wobcke, W.: A flexible framework for sharedplans. In: Sattar, A., Kang, B.-H. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 393–402. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  31. Pirkl, G., Hevesi, P., Cheng, J., Lukowicz, P.: mBeacon: accurate, robust proximity detection with smart phones and smart watches using low frequency modulated magnetic fields. In: Proceedings of the EAI International Conference on Body Area Networks, pp. 186–191. ICST (2015)

    Google Scholar 

  32. Pirkl, G., Lukowicz, P.: Robust, low cost indoor positioning using magnetic resonant coupling. In: Proceedings of the International Conference on Ubiquitous Computing, pp. 431–440. ACM (2012)

    Google Scholar 

  33. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In: Proceedings of the International Conference on Computer Vision (ICCV 2011), pp. 2564–2571. IEEE (2011)

    Google Scholar 

  34. Scerri, P., Pynadath, D., Johnson, L., Rosenbloom, P., Si, M., Schurr, N., Tambe, M.: A prototype infrastructure for distributed robot-agent-person teams. In: Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2003, pp. 433–440. ACM (2003)

    Google Scholar 

  35. Schwartz, T., Feld, M., Bürckert, C., Dimitrov, S., Folz, J., Hutter, D., Hevesi, P., Kiefer, B., Krieger, H.U., Lüth, C., Mronga, D., Pirkl, G., Röfer, T., Spieldenner, T., Wirkus, M., Zinnikus, I., Straube, S.: Hybrid teams of humans, robots and virtual agents in a production setting. In: International Conference Intelligent Environments (IE) (2016, accepted)

    Google Scholar 

  36. Schwendner, J., Roehr, T.M., Haase, S., Wirkus, M., Manz, M., Arnold, S., Machowinski, J.: The Artemis rover as an example for model based engineering in space robotics. In: Workshop Proceedings of the International Conference on Robotics and Automation (ICRA-2014), p. 7. IEEE (2014)

    Google Scholar 

  37. Settembre, G.P., Scerri, P., Farinelli, A., Sycara, K., Nardi, D.: A decentralized approach to cooperative situation assessment in multi-robot systems. In: Proceedings of the International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2008, vol. 1, pp. 31–38. International Foundation for Autonomous Agents and Multiagent Systems (2008)

    Google Scholar 

  38. Snodgrass, R.T.: Developing time-oriented database applications in SQL. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  39. Sons, K., Klein, F., Rubinstein, D., Byelozyorov, S., Slusallek, P.: XML3D: interactive 3D graphics for the web. In: Proceedings of the International Conference on Web 3D Technology, Web3D 2010, pp. 175–184. ACM (2010)

    Google Scholar 

  40. Straube, S., Schwartz, T.: Hybrid teams in the digital network of the future - application, architecture and communication. Industrie 4.0 Manag. 2, 41–45 (2016)

    Google Scholar 

  41. Tambe, M.: Towards flexible teamwork. J. Artif. Int. Res. 7(1), 83–124 (1997)

    Google Scholar 

  42. Täubig, H., Frese, U.: A new library for real-time continuous collision detection. In: Proceedings of the German Conference on Robotics, pp. 108–112. VDE (2012)

    Google Scholar 

  43. Van Dyke Parunak, H., Baker, A.D., Clark, S.J.: The AARIA agent architecture: an example of requirements-driven agent-based system design. In: Proceedings of the International Conference on Autonomous Agents, AGENTS 1997, pp. 482–483. ACM (1997)

    Google Scholar 

  44. Wirkus, M.: Towards robot-independent manipulation behavior description. In: Proceedings of the International Workshop on Domain-Specific Languages and Models for Robotic Systems (2014). arXiv:1412.3247

  45. Zhang, J., Sclaroff, S.: Exploiting surroundedness for saliency detection: a boolean map approach. IEEE Trans. Pattern Anal. Mach. Intell. 38(5), 889–902 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

The research described in this paper has been funded by the German Federal Ministry of Education and Research (BMBF) through the projects HySociaTea and MADMACS (grant no. 01IW14001 and 01IW14003). The authors would like to thank the reviewers for their really valuable input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Schwartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Schwartz, T. et al. (2016). Hybrid Teams: Flexible Collaboration Between Humans, Robots and Virtual Agents. In: Klusch, M., Unland, R., Shehory, O., Pokahr, A., Ahrndt, S. (eds) Multiagent System Technologies. MATES 2016. Lecture Notes in Computer Science(), vol 9872. Springer, Cham. https://doi.org/10.1007/978-3-319-45889-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45889-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45888-5

  • Online ISBN: 978-3-319-45889-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics