

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License

Newcastle University ePrints - eprint.ncl.ac.uk

Martin L, Romanovsky A.

A Formal Approach to Designing Reliable Advisory Systems.

In: 8th International Workshop, SERENE 2016. 2016, Gothenburg, Sweden:

Springer

Copyright:

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-45892-2

DOI link to article:

http://dx.doi.org/10.1007/978-3-319-45892-2

Date deposited:

30/11/2016

http://creativecommons.org/licenses/by-nc/3.0/deed.en_GB
http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=230105
http://dx.doi.org/10.1007/978-3-319-45892-2
http://dx.doi.org/10.1007/978-3-319-45892-2

A Formal Approach to Designing Reliable Advisory

Systems

Luke J.W. Martin, Alexander Romanovsky

Centre for Software Reliability,

School of Computing Science,

Newcastle University,

Newcastle-upon-Tyne, UK

{luke.burton, alexander.romanovsky}@ncl.ac.uk

Abstract. This paper proposes a method in which to formally specify the

design and reliability criteria of an advisory system for use within mission-

critical contexts. This is motivated by increasing demands from industry to

employ automated decision-support tools capable of operating as highly reliable

applications under strict conditions. The proposed method applies the user

requirements and design concept of the advisory system to define an abstract

architecture. A Markov reliability model and real-time scheduling model are

used to effectively capture the operational constraints of the system and are

incorporated to the abstract architectural design to define an architectural

model. These constraints describe component relationships, data flow and

dependencies and execution deadlines of each component. This model is then

expressed and proven using SPARK. It was found that the approach useful in

simplifying the design process for reliable advisory systems, as well as

effectively providing a good basis of a formal specification.

Keywords: Advisory Systems, Artificial Intelligence, Formal Methods, High-

Integrity Software Development, Reliability, Real-Time Systems, SPARK

1 Introduction

Advisory systems are a type of knowledge-based system that provides advice to sup-

port a human decision-maker in identifying possible solutions to complex problems

[1]. Typically, any derived recommendation for a potential solution or description that

accurately details a problem and its implications, requires a degree of embedded ex-

pert knowledge of a specific domain. Advisory systems are often disregarded as

examples of expert systems since there are several distinctive properties and

characteristics between the two, despite sharing a similar architectural design [1]. The

main difference is that an expert system may exist as an autonomous problem-solving

system, which is applied to well-defined problems that requires specific expertise to

solve [1]. An advisory system, in contrast, is limited to working in collaboration with

a human decision-maker, who assumes final authority in making a decision [3]. Thus,

the main objective of an advisory system is to synthesise domain specific knowledge

and expertise, in a form that can be readily used to determine a set of realistic

solutions to a broad range of problems within the domain area. The user is

effectively guided by the system to identify potentially appropriate solutions that

may maximise the possibility of producing a positive outcome and minimise the

degree of risk.

This objective is supported by the basic architecture of advisory systems [1],

which compromises of four core components. These are: (1) the knowledge base that

lists domain specific knowledge; (2) a data monitoring agent that collects (stream)

data; (3) the inference engine that interprets problems from the data and uses expert

knowledge to deduce suitable solutions and (4) the user interface for supporting

human-computer interactions. In the literature, there are many examples of advisory

systems that are deployed in various industrial settings using this architecture, such

as finance, medicine and process control [3-10]. However, since system failures in

these settings can result in potentially serious consequences, such as loss of revenue,

loss of productivity and damage to property, it is important to ensure that advisory

systems are both reliable and dependable [13]. In particular, it is imperative to ensure

that advisory systems are properly verified and validated, as well as ensuring that the

system is appropriately designed for reliability, where it may continue to perform

correctly within its operational environment over its lifespan. Currently, there have

been many proposals and applications of verification and validation (V&V) tools

and techniques that focus on ensuring correctness in the design and implementation

of knowledge-based systems [12-16]. It is frequently noted that current approaches

in V&V for knowledge-based systems are limited as it is unclear if the system

requirements have been adequately met [13]. This is primarily as a result of the

presence of requirements that are difficult to formulate precisely, where reliability is

considered to be one such requirement.

This paper proposes a formal design method that aims to develop and evaluate a

reliable design of an advisory system, which may be used as part of a formal

specification. The method simply establishes a general correctness criteria, based

on the requirements specification and initial design concept, and develops an abstract

architecture that incorporates operational constraints. The purpose of these constraints

is to describe the correct operational behaviour of each component within the system,

with respect to the correctness criteria, where violations of these suggest

conditions for system failures. These constraints are captured through well-

established reliability modelling techniques, such as the Markov model, and the

likeliness of successful operation under these constraints is examined. The abstract

architecture and operational constraints are formally expressed using SPARK. The

formal verification and validation tools within the Ada development environment,

are useful in proving the operational constraints and thus can be useful in

describing how reliability may be achieved in advisory systems.

This paper is structured as follows: Section 2 provides a very brief background of

advisory systems, in terms of general architecture, real-world applications and current

development techniques. Section 3 provides an overview of the proposed design

method. Sections 4, 5 and 6 discuss the application of this method to a current

advisory system that has designed for use within the railway industry. Respectively,

these section discuss: the user requirements and design concept; development of the

architectural model and the implementation of this model using SPARK, which is

applied to prove the constraints. Section 7 concludes the paper.

2 Background

The basic purpose of an advisory system is to assist the end-user in identifying

suitable solutions to complex, unstructured problems [1-10]. In decision-making, an

un- structured problem is one that is characterised with contextual uncertainty,

where there are no definite processes in place for predictably responding to a problem

– that is, well-defined actions that do not necessarily lead to predictable outcomes

[2]. As such, problems of this nature require an analysis of all available information

in order to properly describe the problem and to attribute suitable and realistic

actions that minimises risk and maximises the possibility of yielding a positive

outcome [1, 9]. This enables the decision-maker to form an assessment that would

lead to a decision. The extent at which risk is minimised and the probability of a

positive outcome is increased, determines the overall quality of a decision [4],

where a good decision is one that significantly minimises risk and increases the

possibility of desirable out- comes.

The architecture of an advisory system, which is illustrated in Fig. 1 is structured

according to three fundamental processes [1]: knowledge acquisition; cognition and

interface. Knowledge acquisition is the process in which domain knowledge is

extracted from experts and domain literature by a knowledge engineer, and is

represented in a logical computer-readable format. The knowledge representation

scheme used in advisory systems formalises and organises the knowledge so that it

can be used to support the type of case-based reasoning implemented in the system.

The cognition process encapsulates active data monitoring and problem

recognition [4]. Data is processed and analysed to identify problems, based on types

of statistical deviations. The cause of the problem can potentially be diagnosed by the

system using intelligent machine learning algorithms or solutions to the problem can

be identified based on case-based reasoning. The results of this are presented to the

user through the interface, which essentially provides various features and facilities

to ensure suitable human-computer interactions. This includes formatting the output

in a human readable form, explanation facilities to enable transparency in the

reasoning process of the system and facilities for user input, such as data or queries.

As previously noted, current literature has many detailed applications for advisory

systems in a variety of industrial sectors, including finance, transportation, energy,

space exploration, agriculture, healthcare, business management and tourism. From

these applications, it is clear that designs of advisory systems are based on the

illustrated architecture and perform according to one of two main styles. These are:

(1) monitoring and evaluation and (2) diagnosis and recovery [2-9]. In the

monitoring

and evaluation style, advisory systems simply monitor data streams to identify

statistical anomalies that may represent a potential problem or to identify predictive

behaviour patterns. In either case, data is modelled and analysed to provide some

information, which is then interpreted through an evaluation procedure. This

behaviour is described in the trading advisory system presented by Chu et al [4], in

which the sys- tem monitors and evaluates stock market data to identify specific

movements in the market that may provide lucrative trading opportunities. The

system uses various economic rules and principles as expert knowledge to assist

traders in making decisions on ideal types of stocks to buy and sell.

Fig. 1. Advisory System Architecture, presented in [1]

In the diagnosis and recovery style, parameters are manually input to the advisory

system to frame a problem, where potential causes and/or solutions are automatically

generated by the system from an analysis procedure. An example of advisory systems

that adopt this style is described by Kassim and Abdullah [5]. Here, the advisory

system is designed for use within agriculture is proposed for advising farmers on the

most suitable rural areas and seasons in which to cultivate crops, as well as the types

of crops that should be grown. Farmers provide the system with values for various

input parameters to frame the problem, where expert knowledge is applied to infer

possible solutions on which area a farmer is most likely to be successful and the types

of crops that should be grown. In a final example, presented by Engrand and Mitchell

[6], a set of advisory systems embedded in shuttle flight computer systems are de-

scribed, where separate advisory systems are used for diagnosing malfunctions and

handling faults. The user interacts with these systems to determine the cause of mal-

functions and identify how these may be repaired. Data concerning the physical con-

dition of the shuttle, is provided to these systems through the control system as a con-

tinuous stream, where there is an immediate need for the advisory systems to respond

in real-time. Various other examples of applications are also described in [2, 3, 7-10].

As advisory systems continue to be applied to various industrial settings, where

failures can potentially have serious effects, reliability and dependability become

important factors. This is to ensure that the software is likely to continue its intended

function, without errors, and under specific conditions over a period of time [17].

There are many examples of software reliability models in the literature that can be

applied to predict or estimate reliability in the software applications, where these

approaches can provide meaningful results [18]. However, ensuring reliability in

soft- ware is difficult to achieve as a result of high complexity, where advisory

systems are considered to be very complex systems. This is because, unlike

conventional soft- ware, there is a knowledge base that is used to provide various

parameters for deducing conclusions, where the margin for error is greater. This has

been the main reason why considerable emphasis has been placed on ensuring

correctness in the representation and application of knowledge through advanced

V&V methods and techniques [13-16]. Although various advancements have been

made, V&V in knowledge based systems is a developing area of research, where

many approaches are still in their infancy. Consequently, the focus of reliability has

received little attention, although, there is a clear need to ensure that advisory systems

are designed for reliability.

3 Method Description

The proposed method in this paper aims to provide a simple and thorough approach in

which the design of an advisory system may be effectively described, in terms of user

requirements, operational (or functional) requirements and overall system structure –

which is the primary reason for focusing on advisory systems from an architectural

perspective as each of these can be captured to an extent. As for the design of each

specific component, this is only considered in terms of the architectural style for that

component and the types of mechanisms that are expected to be present in order for

the functional requirements to be successfully addressed. In effect, this provides

specific guidelines for the implementation of the system and can potentially be

useful when developing a formal specification. The process model of the method is

presented in Fig. 2.

 As can be seen from the diagram, the first process is the documentation of the

user, non-functional and functional requirements, which are encapsulated in the

system requirements. It is also expected that the requirements specification would

also consist of a high-level design concept in which to begin considering an

appropriate soft- ware solution. The next phase is the development of an abstract

architecture that lists each of the core components for the system, with suitable

descriptions of the function of these – particularly in terms of input and generated

output, dependencies and basic function. This allows the designer to consider the

structure of each component in which such functions may be achieved, which can

easily be represented through a state machine. These state machines begin to

become connected as dependencies are introduced into the model, which establishes

an architectural model. This can be ex- tended by simply translating the

architectural model into a Markov model, where probabilities of state transitions

are defined. To ensure reliability, operational constraints are also used to extend

the model which to define specific conditions that must be adhered to in order to

ensure successful state transitions for the majority of cases. This can be in terms of

ensuring the correct input format, defining conditions of failure and conditions for

recovery.

Fig. 2. Method Process Model

It is appreciated that not every advisory system will be required to perform in real-

time, therefore inclusion of a real-time scheduling model is optional. The purpose of

this is to simply set deadlines for each component and conditions for execution time.

With a description of the architectural model, it is then translated into a formal

simulation prototype in which each of the constraints may be proven in concept,

ensuring that there are no deadlocks, the system performs in accordance to the

original requirements that were documented and performs correctly. Essentially, the

formal prototype is to ensure correctness of the constraints in terms of their ability to

satisfy the reliability criteria, which to ensure proof of termination, proof of

correctness (which respect to requirements) and proof of real-time – which, at the

design phase, can only be achieved in theory.

4 System Requirements and Design Concept

Given the description of the method, as described in the previous section, the remain-

der of this paper considers the application to an active research project concerned with

the design and development of next generation advisory systems. The requirements

and design concept that is described in this section is for an advisory system that has

been designed for use within the railway domain. The design and development of this

system is the focus of an ongoing PhD project that is sponsored by Siemens Rail

Automation and the Engineering and Physical Sciences Research Council (EPSRC).

The purpose of this system is to identify ongoing or potential delays in an area of the

rail- way network that is monitored by the traffic control system and to advise the

traffic coordinator, as the decision-maker, on possible rescheduling strategies that

may be applied to allow for (partial) recovery of a delay or to avoid potential future

delays. The advisory system, in this context, is required to ensure that a reasonable

degree of dependability in the railway network is maintained. This objective is

motivated by active demands within the railway industry for systems that can

provide automated support, particularly for dispatchers, who are mainly responsible

for managing delays. Currently, dispatchers often rely on experience and intuition to

make predictions of a train’s arrival time to a station based on the last known delays

that were recorded and the train’s relative position. This method, as discussed in

Martin [12], is considered imprecise since it does not account for partial recoveries

or extended delays as it assumes that a train would maintain its current trajectory.

A level of automation is therefore necessary to ensure improved accuracy in

predictions of train arrival and departure times for each controllable point in its

path. The potential of this proposed advisory system is the degree in which

operational reliability may be improved by providing dispatchers with more

accurate information, which can be incorporated in planning and re-planning

processes.

The user requirements for this system are particularly extensive, especially in terms

of human-computer interactions. However, the key requirements are that the advisory

system must extend the functionality of current operational control systems, such as

the European Traffic Control System (ETCS), by providing advice that ensures

robustness of the original timetable when disruptions to services occur. This

directly states that all advice should be produced for the purpose of recommending a

rerouting strategy for any disrupted services to ensure that each train is capable of

arriving as close to the original timetabled deadline as possible. A delay of up to a

maximum of 10 minutes is generally acceptable. The advice is also expected to be

produced in real- time, which has been specifically defined as a time period between

2-5 minutes. This is to allow time for decision to be made by the traffic coordinator,

dispatcher or signal operator. Finally, the advice itself must be robust enough to

ensure that any unintentional delays do not occur. This means that if a potential or

ongoing delay has been recognized at a point in time in a specific section of the

railway network, the advice should not list any suggestions that are likely to cause a

delay later in the future. Other requirements also include enabling the user the easily

understand and interpret the advice that is produced, where delays and problems

can instantly be recognized and initiate the contingency planning process that takes

place to accommodate for expected disruptions, as well provide some prompts on

actions that may be taken to minimizes the effect of the disruption.

5 System Architecture

The abstract architecture, which implements the specification, for the rail advisory

system, as illustrated in Fig. 3, is structured into four major components, which are

the knowledge base, the inference engine, the data processing agent (or monitoring

agent) and the interface. This architecture is based on the general advisory system

architecture and the system concepts that were presented by Beemer and Gregg [1],

where it has been modified specifically for addressing the key requirements outlined

in the previous section.

Fig. 3. Abstract architecture of the rail advisory system with data flow annotations

As with general advisory systems, the role of the knowledge base is to simply store

domain specific knowledge that is referenced by the inference engine, which frames

the problem and identifies possible solutions that are both presented to the user via the

interface. The inference engine is constructed from three main algorithmic sub-

components, which are the prediction, rescheduling and advice generation algorithms.

Respectively, these algorithms: receive information from the data processing agent to

predict possible train delays that are likely to occur as well as to predict the potential

impact of delays that are either ongoing or are likely; to use the predicted impact as a

value for a cost metric to define cost of paths, where the cheapest and most feasible

path is identified; and to use information of possible delays, the effects of these and

the most suitable path(s) to generate understandable advice for the user. The advice

generation algorithm is also expected to cross check the advice against previous ad-

vice to ensure that the results are consistent. To ensure speed in processing, there is

separate driver algorithm that extracts specific information from the knowledge base

to provide the necessary heuristics that are required by both the prediction and the

rescheduling algorithms. Finally, the data processing agent is responsible for

extracting raw data from the control system and to process it to identify key

statistical and stochastic information that can be used for prediction.

5.1 Markov Reliability Model

The Markov model consists of a list of the possible states of the advisory system, the

possible transition paths between those states and the rate parameters of those

transitions [17]. Fig. 4 presents a Markov state machine (sometimes called a Markov

chain) with four distinct states. This general class of systems may be described at any

time as being in one of a set of n distinct states, s1, s2, s3, ... , sn. The system

undergoes changes of state, with the possibility of it remaining in the same state, at

regular discrete time intervals. We describe the ordered set of times t that are

associated with the discrete intervals as t1, t2, t3, ... , tn. The system changes state

according to the distribution of probabilities associated with each state. We denote

the actual state of the machine at time t as st. The states represent the following: S1

is data processing; s2 is prediction; s3 is knowledge query and s4 is rescheduling.

3

4 2

1

Fig. 3. Markov model of cognition process

A full probabilistic description of this system requires, in the general case, the spec-

ification of the present state st, in terms of all its predecessor states. Thus, the proba-

1

1 1 1

1 1

1

1

bility of the system being in any particular state st is: p(st) = p(st | st - 1, st - 2, st - 3,

...) where the st - 1 are the predecessor states of st. In a first-order Markov chain, the

probability of the present state is a function only of its direct predecessor state: p(st) =

p(st | st - 1) where st - 1 is the predecessor of st. We next assume that the right side of

this equation is time invariant, that is, we hypothesise that across all time periods of

the system, the transitions between specific states retain the same probabilistic rela-

tionships. Based on these assumptions, we now can create a set of state transition

probabilities aij between any two states si and sj as follows: aij = p(st = si | st - 1 = sj), 1
≥ i, j ≥ N Note that i can equal j, in which case the system remains in the same state.

The traditional constraints remain on these probability distributions; for each state si:

N aij ≥ 0, and for all j, Σ aij = 1 i = 1. The system we have just described is called a

first-order observable Markov model since the output of the system is the set of states

at each discrete time interval. The transition probabilities are observed from the op-

erational profile and are independent of component reliabilities. If component ci con-

nects to n subsequent components { i k c | 1≤ k ≤ n }, the transition probability Pij

between components ci and i j c is equal to ∑= n k t i j t i k 1 (,) (,). Here, t(i,j) is

the total number of invocations or control transfers from component ci to i j c . In this

section, we describe reliability modeling of software with single architectural style.

For simplicity, the connector reliabilities will not be considered until the modeling of

heterogeneous architecture in the next section. Four architectural styles are used to

demonstrate how to model reliability of software with single architectural style. These

styles include batch-sequential, parallel/pipe-filter, call-and-return, and fault tolerance

styles.

5.2 Real-Time Scheduling Model

The performance criteria of the advisory system is classified as firm, where each

component must perform according to a firm deadline. The term firm is used as the

system must produce an output that is important for ensuring the dependability of the

railway, however, complete failure to produce on time is expected to result in

inconvenience and loss of productivity, rather a failure in the railway. There are

many mathematical models available to represent scheduling that are used to

implement scheduling algorithms. For the purpose of this paper, we refer to a

simple static scheduling model, where each component in the advisory system,

except for the knowledge base, performs a process that is described as being a

sequence of tasks. The schedule is an assignment of the tasks to be processed so that

each task is able to execute until completion. In the case study, it has been explicitly

stated from potential end-users that a best execution time is any time that less than,

or equal to 2 minutes. The worst case execution time was stated as being at most 5

minutes. Any advice that was produced after 5 minutes would not be considered

useful as it would require the dispatcher at least 10 minutes to make a decision,

where 15 minutes would have elapsed before any decision was made and

implemented, by which time the situation may be different given the constantly

changing state of the railway network. In particular, time periods of up to 20 minutes

in European national railway lines is considered significant as this the minimum time

required to observe any real change in state

[11]. The average execution time, therefore, would be any time between 2 and 5

minutes. The schedule for each component. Development of the scheduling model is

described in detail in [19], where we simply use the preemptive fixed priority sched-

uling model to assess the feasibility of developing a fixed priority schedule. Here,

each component is to execute according to a priority, where the data processing has

the highest priority until execution, where prediction has the next highest priority.

Each component must perform according to a deadline, where we evenly distribute

the time for each component, where the best case for each is 30 seconds and the worst

is 1 minute. The performance time of the system is the sum of execution of each com-

ponent, where if it is proven that each component can perform to the deadline, then

the system can also perform against the deadline as well.

Whist the work described in [19] is very important, it is not complete in the sense

that it ignores the impact of the time required to perform system tasks. And there are

reasons to believe that such overhead in not negligible, since interrupt handling, task

switching and preemption are vital to fixed priority scheduling and may occur fre-

quently. Two implementations are possible for a fixed priority scheduler [19]: event-

driven and time-driven. In event-driven scheduling, all tasks are initiated by internal

or external events.

6 SPARK Prototype

This section presents the final phase of the formal design method, in which the ab-

stract architecture and operational constraints are implemented for the purpose of

defining a formal prototype. The aim of the prototype is to conduct various simula-

tions to ensure correct operational behaviour, mainly in terms of real-time execution

and data flow control. As the operational constraints are captured to describe correct

operational behaviour, it is important that these are proven for correctness using V&V

and are formally expressed, which is achieved using SPARK.

SPARK is based on the principle of Correctness by Construction, an efficient and

mathematically rigorous approach to software development that avoids defects, or

detects and removes them quickly. Correctness by Construction involves strong static

verification as the system is being implemented and allows the cumulative develop-

ment of certification-oriented evidence.

SPARK is an Ada subset augmented with a notation for specifying contracts (an-

notations in the form of Ada comments) that are analysed statically. The current ver-

sion of SPARK is based on Ada 2005 and includes a large portion of Ada’s static

semantic facilities such as packages/ encapsulation, subprograms, most types, and

some Object-Oriented Programming features, as well as the Ravenscar tasking pro-

file. Features such as exceptions, goto statements, and dynamic binding are excluded

because they would complicate formal verification; other features such as access

types (pointers), dynamically sized arrays, and recursion are excluded because they

would interfere with time or space predictability.

Below is a brief example of the coded implementation used in building the proto-

type, which focuses specifically in controlling the execution of tasks by stopping and

starting them in response to events that occur. Each event is scheduled according to a

specified deadline, where a simple scheduling algorithm is implemented. For sim-

plicity, the tasks

package Task_Control

is

type Suspension_Object is limited private;

procedure Set_True(S

: in out Suspension_Object);

--# derives S from ;

-- Note the apparent mismatch between the parameter mode and

the derives annotationR4.

-- This arises because the Ada run-time system needs to

read SO in order to determine

-- whether any tasks should now be started whereas, for flow

analysis purposes, we only

-- need to record the fact that SO is given a new value that does

not depend on any import.

procedure Set_False(S

: in out Suspension_Object);

--# derives S from ;

procedure Suspend_Until_True(S

: in out Suspension_Object);

--# derives S from ;

private

--# hide Task_Control;

end Task_Control;

….

sub-

type Any_Priority is Integer range

0 .. 31;

sub-

type Priority is Any_Priority range

0 .. 30;

sub-

type Interrupt_Priority is Any_Priority range 3

1 .. 31;

Program 1: Program extract for task control and priority scheduling

This code extract is applied to the scheduling algorithm to specify tasks, and the order

of tasks, that are to be scheduled. The result of the code is that very abstract defini-

tions of tasks, which simply represent data processing, knowledge query, prediction

and rescheduling, are scheduled, where the task control extract ensures that the next

task proceeds when the previous task has completely executed. The priority of sched-

uling changes after the completion of each task, where initially data processing has

the highest priority and after its completion, the prediction and knowledge query are

then given priority. The algorithm iterates in a cycle to represent a continuous stream

of data that is provided to the advisory system and performs over 100000 iterations

before terminating.

The final coded solution also includes various procedures that regulate data flow

control, particularly in terms of ensuring that each component, as a defined process,

sends and receives data in the correct format, which is defined as an object for sim-

plicity, and that the data object is initialised with some value. If the value is null an

exception is thrown and the process is unable to complete, however, to ensure that the

system doesn’t crash, the final output is simply an exception message.

7 Conclusions

This paper proposed a formal design method for designing reliable advisory systems,

where the basic concepts of this were presented. The results that were accumulated

demonstrated some potential in applying this approach to the development of a formal

specification of industrial advisory systems in settings where reliability and

dependability are important requirements. The development of this method, and

improvement thereof, is an ongoing work, where there are many avenues in which to

improve that will be explored in the future. A key concern in this approach, which

is to be ad- dressed in subsequent work, is that while the method aims to provide a

thorough de- sign for reliability and evaluation of the design, there is a risk that too

much time can be spent in developing expressive models. It is important that the

reliability models capture as much detail as possible, in terms of component

dependencies and execution deadlines. However, significant levels of abstraction

are required to develop these models and capture the operational constraints. It is

felt that the description is an oversimplified view of the system and, therefore, may

be limited in its practical use. This is especially true when developing the formal

prototype. Although, it is useful in demonstrating the relationship between each

component, the order of execution, expected time period of execution and data

control procedures.

In terms of real-time performance, it is not possible to identify if a component will

be able to perform in real-time solely by its abstract specification. This is because

concrete specifications and algorithm designs are typically analysed to estimate real-

time capability, which are not available from an architectural perspective. A difficulty

is that the architectural style of many components, defined by the specification, are

fault-tolerant – which impacts on real-time performance as recovery processes can be

costly in execution time. However, some processes are also concurrent and a predict-

able finite process model is defined, which provides some confidence of real-time

execution at an architectural level. At this stage, it is believed to be possible to extend

the constraints of the process model by defining a scheduling model. A more accurate

estimate, however, and indeed a proof, can be derived from the analysis of the algo-

rithms that are used and empirical evidence can be gathered post-implementation.

Nevertheless, time constraints are defined and incorporated into the model, where a

predictable and deterministic performance is required to ensure that these constraints

are met.

References

[1] Beemer, B.A. and Gregg, D.G., “Advisory Systems to Support Decision Making,” Chapter 24, Hand-

book on Decision Support Systems 1: Basic Themes, 2007, Springer, pp: 361-377.

[2] Fensel, D. and Groenboom, R., “A Software Architecture for Knowledge-Based Systems” The
Knowledge Engineering Review, 1999, Vol.14 (2), pp. 153-173.

[3] Dunkel, J. and Bruns, R. “Software Architecture of Advisory Systems Using Agent and Semantic
Web Technologies” in Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web In-

telligence (WI’05), 2005, pp. 418-421.
[4] ElAlfi, A.E.E. and ElAlami, M.E., “Intelligent Advisory System for Supporting University

Managers in Law” in International Journal of Computer Science and Information Security

(IJCSIS), Vol.3, No.1, 2009, pp. 123-128.

[5] Chu, S.C.W, Ng, H.S. and Lam, K.P., “Intelligent Trading Advisor” in Proceedings of the

2000 IEEE International Conference on Management of Innovation Technology , 2000, pp.

53-58.
[6] Kassim, J.M. and Abdullah, R. “Advisory System Architecture in Agricultural Environment

to Support Decision Making Process”, 2nd International Conference on Digital Information

and Communication Technology and its Applications, 2012, pp. 453-456.

[7] Mburu, C., Lee, H. and Mbogho, A. “E-Health Advisory System for HIV/AIDS Patients in South

Africa”, 7thInternational Conference on Appropriate Healthcare Technologies for Developing Coun-
tries, IET, 2012, pp. 1-4.

[8] Engrand, P., Mitchell, T., Fowler, T. and Melichar, T. “The Development of A dvisory Sys-

tems for Shuttle Slight Computer Systems at the Kennedy Space Center”, Conference Pr o-

ceedings 1991, IEEE International Conference on Systems, Man and Cybernetics , Vol. 3, pp.

1685-1690.

[9] Sadek, A.W., “Artificial Intelligence Applications in Trans portation”, Artificial Intelligence

in Transportation: Information for Application , Transportation Research Circular, No. E -
C113, Transportation Research Board of the National Academies, 2007, pp. 1 -6.

[10] Spring, G., “Knowledge-Based Systems in Transportation”, Artificial Intelligence in Trans-

portation: Information for Application , Transportation Research Circular, No. E-C113,

Transportation Research Board of the National Academies, 2007, pp. 7 -16.

[11] Martin, L., “Predictive Reasoning and Machine Learning for t he Enhancement of Reliability

in Railway Systems”, Reliability, Safety and Security of Railway Systems: Modelling, Anal y-

sis, Verification and Certification, 2016, To Appear.

[12] Ayel, M. and Laurent, J.P. “Validation, Verification and Test of Knowledge -Based Systems”
in IEEE Transactions on Knowledge and Data Engineering , Vol.11 (1), 1999, pp. 292-212.

[13] Serrano, J.A., “Formal Specifications of Software Design Methods” In IW-FM’99 Proceedings of the

3rd Irish Conference on Formal Methods, British Computer Society, Swindon, UK, 1999, pp. 208-224.

[14] Meseguer, P. and Preece, A. D., “Verification and Validation of Knowledge-Based Systems with For-

mal Specifications” Knowledge Engineering Review, 1995, Vol.4 (1).
[15] Antoniou, G., van Harmelen, F., Plant, R. and Vanthienen, J. “Verification and Validation of

Knowledge-Based Systems”, AI Magazine, Vol. 19, No. 3, 1998, pp. 123-126.

[16] Tsai, W.T., Vishnuvajjala, R. and Zhang, D. “Verification and Validation of Knowledge-Based Sys-

tems”, In: IEEE Transactions on Knowledge and Data Engineering, Vol.11 (1), 1999, pp. 202-

212.
[17] Kitchin, J.F., “Practical Markov Modelling for Reliability Analysis” in Proceedings of the

Annual Reliability and Maintainability Symposium, 1988, pp: 290-296.

[18] Wang, W.L., Pan, D. and Chen M.H., “Architectu re-Based Software Reliability Modeling”,

Journal of Systems and Software, Vol.79 (1), 2006, pp.132-146.

[19] de Magalhães, A.J.P. and Costa, C.J.A. “Real-Time Scheduling Models”, Technical Report,

Controlo 2000, 4th Portuguese Conference on Automatic Control , 2000.

[20] Dross, C., Efstathopoulos, P. Lesens, D., Mentr é, D. and Moy, Y., “Rail, Space, Security: Three
Case Studies for SPARK 2014” Proc. ERTS, 2014.

