Skip to main content

A Neural Field Approach to Obstacle Avoidance

  • Conference paper
  • First Online:
KI 2016: Advances in Artificial Intelligence (KI 2016)

Abstract

Cognitive robotics aims at understanding biological processes, though it has also the potential to improve future robotics systems. Here we show how a biologically inspired model of motor control with neural fields can be augmented with additional components such that it is able to solve a basic robotics task, that of obstacle avoidance. While obstacle avoidance is a well researched area, the focus here is on the extensibility of a biologically inspired framework. This work demonstrates how easily the biological inspired system can be used to adapt to new tasks. This flexibility is thought to be a major hallmark of biological agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27(2), 77–87 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Bicho, E., Louro, L., Erlhagen, W.: Integrating verbal and nonverbal communication in a dynamic neural field architecture for human-robot interaction. Front. Neurorobot. 4, 5 (2010). doi:10.3389/fnbot.2010.00005

  • Borenstein, J., Koren, Y.: The vector field historgram - fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 7(3), 278–288 (1991)

    Article  Google Scholar 

  • Connors, W., Trappenberg, T.: Improved path integration using a modified weight combination method. Cogn. Comput. 5(3), 295–306 (2013)

    Article  Google Scholar 

  • Engels, C., Schöner, G.: Dynamic fields endow behavior-based robots with representations. Robot. Auton. Syst. 14(1), 55–77 (1995)

    Article  Google Scholar 

  • Fard, F.S., Hollensen, P., Heinke, D., Trappenberg, T.P.: Modeling human target reaching with an adaptive observer implemented with dynamic neural fields. Neural Netw. 72, 13–30 (2015)

    Article  Google Scholar 

  • Iossifidis, I., Steinhage, A.: Controlling an 8 DOF manipulator by means of neural fields. In: Proceedings of the International Conference on Field and Service Robotics. FSR 2001, Helsinki, Finland (2001)

    Google Scholar 

  • Khansari-Zadeh, S.M., Billard, A.: A dynamical system approach to realtime obstacle avoidance. Auton. Robots 32(4), 433–454 (2012)

    Article  Google Scholar 

  • Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 2, pp. 500–505 (1985)

    Google Scholar 

  • Latombe, J.-C.: Robot Motion Planning. Kluwer Academic Publishers, New York (1991)

    Book  MATH  Google Scholar 

  • Lumelsky, V.J., Stepanov, A.A.: Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica 2(1), 403–430 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Milford, M.J., Wyeth, G.F., Prasser, D.: RatSLAM: a hippocampal model for simultaneous localization and mapping. In: 2004 IEEE International Conference on Robotics and Automation, Proceedings. ICRA 2004, vol. 1, pp. 403–408 (2004)

    Google Scholar 

  • Montiel, O., Orozco-Rosas, U., Sepúlveda, R.: Path planning for mobile robots using bacterial potential field for avoiding static and dynamic obstacles. Experts Syst. Appl. 42(12), 5177–5191 (2015)

    Article  Google Scholar 

  • Sandamirskaya, Y.: Dynamic neural fields as astep toward cognitive neuromorphic architectures. Front. Neurosci. 7, 276 (2014). doi:10.3389/fnins.2013.00276

  • Schmidt, R.A.: Motor Control and Learning: A Behavioural Emphasis, 2nd edn. Human Kinetics, Champaign (1987)

    Google Scholar 

  • Schmidt, R.A.: Motor and action perspectives on motor behaviour. In: Advances in Psychology, Volume 50, Complex Movement Behaviour: The Motor-Action Controversy, pp. 3-44. Elsevier, Science Publishers B.V., North Holland (1988)

    Google Scholar 

  • Schöner, G., Zanone, P.G., Kelso, J.A.S.: Learning as change of coordination dynamics: theory and experiment. J. Motor Behav. 24(1), 29–48 (1992)

    Article  Google Scholar 

  • Schöner, G., Dose, M., Engels, C.: Dynamics of behavior: theory and applications for autonomous robot architectures. Robot. Auton. Syst. 16(2–4), 213–245 (1995)

    Article  Google Scholar 

  • Siegwart, R., Nourbakhsh, I.R., Scaramuzza, D.: Introduction to Autonomous Mobile Robots, 2nd edn. MIT Press, Cambridge (2011)

    Google Scholar 

  • Simmons, R.: The curvature velocity method for local obstacle avoidance. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 3375–3382 (1996)

    Google Scholar 

  • Strauss, S., Heinke, D.: A robotics-based approach to modeling ofchoice reaching experiments on visual attention. Front. Psychol. 3, 105 (2012). doi:10.3389/fpsyg.2012.00105

  • Stringer, S.M., Rolls, E.T., Trappenberg, T.P., de Araujo, I.E.T.: Self-organizing continous attractor networks and path integration: two-dimensional models of place cells. Netw.: Comput. Neural Syst. 13(4), 429–446 (2002a)

    Google Scholar 

  • Stringer, S.M., Trappenberg, T.P., Rolls, E.T., de Araujo, I.E.T.: Self-organizing continuous attractor networks and path integration: one-dimensional models of head direction cells. Netw.: Comput. Neural Syst. 13(2), 217–242 (2002b)

    Google Scholar 

  • Stringer, S.M., Rolls, E.T., Trappenberg, T.P., de Araujo, I.E.: Self-organizing continuous attractor networks and motor function. Neural Netw. 16(2), 161–182 (2003)

    Article  MATH  Google Scholar 

  • Torta, E., Cuijpers, R.H., Juola, J.F.: Dynamic neural field as framework for behaviour coordination in mobile robots. In: World Automation Congress (WAC), pp. 1–6. IEEE (2012)

    Google Scholar 

  • Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12(1), 1–24 (1972)

    Article  Google Scholar 

  • Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13(2), 55–80 (1973)

    Article  MATH  Google Scholar 

  • Xia, C., El Kamel, A.: A reinforcement learning method of obstacle avoidance for industrial mobile vehicles in unknown environments using neural network. In: Proceedings of 21st International Conference on Industrial Engineering and Engineering Management, pp. 671–675 (2015)

    Google Scholar 

  • Yang, G.-S., Chen, E.-K., An, C.-W.: Mobile robot navigation using neural Q-learning. In: Proceedings of International Conference of Machine Learning and Cybernetics, vol. 1, pp. 48–52 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Kwang Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Tan, C.K., Plöger, P.G., Trappenberg, T.P. (2016). A Neural Field Approach to Obstacle Avoidance. In: Friedrich, G., Helmert, M., Wotawa, F. (eds) KI 2016: Advances in Artificial Intelligence. KI 2016. Lecture Notes in Computer Science(), vol 9904. Springer, Cham. https://doi.org/10.1007/978-3-319-46073-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46073-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46072-7

  • Online ISBN: 978-3-319-46073-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics