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Abstract

There is a significant interest in the computational physics community to perform
lattice quantum chromodynamics (LQCD) simulations, which can run into the trillions
of operations. LQCD computations solve a sparse linear system using a Wilson Dslash
kernel, which has an arithmetic intensity of 0.88-2.29. This makes Dslash memory
bandwidth-bound on most architectures, including Intel Xeon Phi Knights Corner
(KNC). Most research optimizing the Dslash operator has been focused on single
right-hand side (SRHS) linear solvers. There is a class of LQCD computations which
aims to solve systems with multiple right-hand sides (MRHS), presenting additional
opportunities for data reuse and vectorization. We present two approaches to MRHS
Dslash: a vector register blocking approach and one using the software package QPhiX
with a custom code generator for low-level intrinsics. We observed significant speedups
using our approaches, with sustained performance of over 700 GFLOPS (single precision)
in one instance. We achieved up to 29% of theoretical peak performance compared to a
maximum of 13% obtained by the previous SRHS method using QPhiX.
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1 Introduction
Lattice quantum chromodynamics (LQCD) is a uniquely important computational technique
for the simulation of the strong nuclear force, which governs quark and gluon interaction in
the nucleon. LQCD is to date the only non-perturbative, model-independent, quantum field
theory in use for the calculation of quark-gluon interactions. LQCD simulations are thus
needed for areas of research at the frontiers of physics, including understanding of the allowed
states and structure of hadronic and nuclear matter. To facilitate numerical computation,
LQCD discretizes space-time as a 4-dimensional hypercubic lattice. To simulate larger lattices
with shorter lattice spacing, ever-increasing computing power is required. The computational
core of LQCD with Wilson fermions is the Wilson Dslash operator (henceforth Dslash), a
nearest neighbor stencil operator summing matrix-vector multiplications over lattice points,
whose performance is bandwidth-bound on most architectures [7]. Reportedly, up to 90% of
LQCD running time may be spent applying Dslash [6]. Clearly, optimization of Dslash is
paramount in the performance of LQCD simulations.

We approach the optimization of Dslash by designing two different kernels for Intel
Xeon Phi Knights Corner (KNC). Significant research has been devoted to exploring KNC’s
potential to drive LQCD simulations [5], [7], [14], [10], [8]. The bulk of this research in the
area of Dslash has involved single right-hand side (SRHS) solvers, though [10] and [12] use
multiple right-hand sides (MRHS). We describe Dslash kernels applied to MRHS in parallel
on a single node. For our approaches, we have written kernels which use 8 and 16 right-hand
sides (RHS). The intuition behind a MRHS approach is that each RHS can make use of the
same gauge field configuration (see Section 2.1), which can increase the arithmetic intensity
of the Dslash operator from 0.92 (SRHS) to 1.47 (16 RHS) in an otherwise unoptimized
scenario.

In the first of our two approaches, we hand code a kernel using KNC vector intrinsics
(see Section 2.2) which uses a register blocking (RegBlk) technique to minimize the pressure
register spills would put on the L1 cache. We reduce register pressure by specifying a certain
order to the matrix-vector multiplications and by holding accumulated sums in vector registers.
This is straightforward in a kernel with 8 RHS, but requires some tricks to eliminate spills in
a 16 RHS kernel, due to the limited number of vector registers. We also explain our approach
to vectorization for KNC’s powerful vector processing unit (VPU). In contrast to RegBlk,
vectorization is simple for 16 RHS and challenging for 8 RHS.

Our second approach optimizes a kernel using the QPhiX LQCD framework [4] and its
custom code generator [3], which generates SIMD intrinsics for modern architectures. The
goal of QPhiX is to provide a high level module which handles threading, cache-blocking,
and MPI communication and a module which provides an abstraction into which the code
generator can plug SIMD intrinsics for various architectures. QPhiX and its code generator
also provide multiple configurations (blocking, vector length, precision) and approaches to
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vectorization. We modified the code generator to provide a new configuration option for 16
RHS and to support prefetching on KNC. We also modified QPhiX to support MRHS (for
example, a new memory layout is necessary) and our own site traversal strategies (see Section
6). To implement 8 RHS, we modified the 16 RHS code produced by the code generator.

The remainder of this paper is structured as follows. In section 2 we describe the Dslash
operator at a high level as well as the target hardware, KNC. In section 3 we detail our RegBlk
implementations. In section 4 we describe the QPhiX and code generator (QPhiX-CoGen)
approach. Finally, we discuss our results and compare them to a SRHS QPhiX-CoGen kernel.

2 Background

2.1 Dslash
LQCD’s Dslash operator is applied over a finite space-time discretized as a 4-dimensional
hypercubic lattice. One may imagine the lattice as a set of linked points. In LQCD, quark
fields are represented by lattice points and gluon fields by the links. The lattice has some
length in a direction µ ∈ {x, y, z, t}, Lµ. The number of sites on a lattice is given by
V OL = Lx×Ly ×Lz ×Lt. Each site (with coordinates <x, y, z, t>) has 2 neighbors for each
direction, forward and backward, which correspond to the positive and negative directions on
that axis. For neighbor site determination, the lattice has periodic boundary conditions.

We can think of Ψ and U as the input to Dslash. Ψ defines ψ for every site, a 4×3 matrix
of complex numbers called a spinor. U defines U for every site, a 3× 3 matrix of complex
numbers called a gauge field or gauge matrix. Since U are members of the group SU(3), they
can be stored in several representations. A particular trick is to store only two rows of a
3× 3 unitary matrix representation, and to reconstruct the 3rd row by appealing to unitarity
(i.e. that det(U) = 1) from the complex conjugate of the vector product of the first two rows.

Dslash computes χ for all of the even or odd (based on sum of coordinates) sites on the
lattice. χ is also a spinor of the same dimensions as ψ, and in a full solver will be used as the
input to another iteration of the computation.

We can employ a spin projection trick, reducing ψ ∈ C4×3 to ψ′ ∈ C2×3, which increases
the arithmetic intensity of the operator. Applying Dslash to a site will calculate χ by
summing Uψ′ for each neighbor of the site in question into what we’ll call χu, the upper sum.
Simultaneously, the lower sum χl will be computed as a permutation of the result of Uψ′ for
each neighbor. These two sums together form χ. For more information about Dslash, please
see [9].

2.2 Intel Xeon Phi Knights Corner
Knights Corner is a line of many-core PCIe coprocessor cards in the Intel Xeon Phi family.
KNC cards are massively parallel chips with high memory bandwidth suited for scientific
computing applications. They feature up to 61 cores running at up to 1.238 GHz. A key
feature of KNC is its VPU. KNC boasts 512-bit vector registers, capable of SIMD operations
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on 16 single precision numbers simultaneously. Individual cores can support up to 4 hardware
threads, each with a full context of registers, including vector registers, of which there are 32.
Intel provides a set of C-style functions called intrinsics, which act directly on vector registers
in an assembly-like way. For further KNC details, please see [1].

3 Multiple Right-hand Side Performance Model
The approach of solving for MRHS is an established technique in LQCD research [10], [13].
We create a new operator with lower bandwidth needs than N applications of the original
operator. Application of Dslash to a single site performs 1320 FLOPs. Because we assume the
operator is bandwidth-bound [7], we can analyze the expected speedup for different numbers
of right-hand sides if we take the performance to be equal to: FLOPs

byte × bandwidth. Then, we
need only divide the MRHS FLOPs/byte by the SRHS FLOPs/byte to compute speedup.
We begin by defining variables. N is the number of right hand sides. Let G be the number
of components in a gauge matrix and let F = sizeof(float). In this model, we will not
consider architectural details like cache line size. For each site’s Dslash computation, we
need to load 8GF bytes. Let S be the number of components in a spinor (24). Let us define
a SRHS neighbor spinor reuse factor R1 and similarly RN for MRHS. This is the number
of neighbor spinors already present in cache when processed. For each site in SRHS, then,
we need to load (8−R1) neighbor spinors plus one unavoidable spinor to write the output.
In total, this is SF ((8 − R1) + 1) bytes in spinors. For MRHS, we replace R1 with RN

and multiply the neighbor spinors and FLOPs by N . That gives us MRHS FLOPs/byte of
1320N

8GF +NSF ((8−RN )+1) and SRHS FLOPs/byte of 1320
8GF +SF ((8−R1)+1) . Then, to compute speedup,

we divide MRHS by SRHS:

speedup = 8NGF +NSF (9−R1)
8GF +NSF (9−RN)

To visualize our speedup as values of N and RN vary, we can assume values of the other
variables. We can take R1 to be 7, which is borne out in practice for at least lattices up to
324, though it requires substantial effort to achieve [14]. Single precision (F = 4), a spinor
size of S = 24, and 12-compression of U meaning G = 12 (see Section 6), yields the graph of
speedup versus N shown in Figure 1. A separate curve is shown for each value of parameter
RN ∈ {0, 1, . . . , 7}, which is not necessarily restricted to integers. Notice we require RN > 3
to achieve any speedup, which will limit our performance gains for lattices of medium to
large size, as spinor data scales by N and cache size remains fixed.

4 Register Blocking Approaches
8 RHS. We must compute Uψ′ for a single U and 8 different ψ′. This suggests a simple
vectorization – broadcast a component of U to fill a register then fill another register with
whatever will be multiplied by that component of U . That will be a row of ψ′. Happily,
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Figure 1: MRHS scaling for values of N and RN .

because there are 2 (real or imaginary) components in a row of ψ′ and 8 RHS, we can fill a
vector register with a row of ψ′ by treating the real and imaginary components separately.
We cannot store rows of ψ′ in memory directly, however, as they are a projection (see Section
2.1) of some ψ, meaning the components of ψ′ are formed by computing the sum or difference
of two components of ψ. Thus, we must store components of ψ in pairs of 8 (for each RHS)
which interact with other pairs to form a row of the projected ψ′. With such a layout, we
fully vectorize both the projections and the matrix-vector multiplications.

In the projection of ψ, when row 0 interacts with row 2, row 1 interacts with row 3. For a
given µ, real components always interact with real or imaginary components and vice versa.
All interactions occur intra-column. The direction of µ only changes signs. Bearing in mind
these restrictions and the fact that KNC allows permutation across 256-bit lanes, it is clear
we can pair components by column and realness, and these pairs and the general data layout
are given in Figure 2.

For 8 RHS, the upper and lower sums occupy 12 vector registers (24 components, 2
components per register). The projected matrix occupies 6 registers. We can project a
single component of U at a time, multiplying by the rows of ψ′ and storing the result in two
accumulator registers, one for the real and imaginary components of the row of the result. We
then proceed across a row of U , computing the dot product of the first row and column of U
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Figure 2: Layout of 8 RHS RegBlk in memory.

and ψ′, respectively. Once a component of Uψ′ has been computed, it can be added directly
to the upper sum and some component of the lower sum. his requires only an additional 3
registers, bringing the total to 21, well short of the limit of 32.

16 RHS. KNC’s vector length is 64 bytes or 16 4-byte floats. This simplifies the
vectorization scheme for 16 RHS. Each component of ψ fills one vector register, so there
is no need to worry about how different components will interact during projection and
multiplication. Thus, all of the difficulties of the 8 RHS scheme vanish, and we simply place
each component of ψ in its own register.

16 RHS register blocking requires a different approach than the one we use for 8 RHS. We
must necessarily keep the upper and lower sums in registers (to avoid spills) and this requires
24, leaving only 8 for calculations. Since our 8 RHS algorithm requires loading all projections,
that would require 24 + 12 registers for 16 RHS, so we must use a different approach.

The problem lies in the temporary accumulation of sums. What we can do to solve this
is propagate the sign changes required by the lower sum down to the lower level multiplies,
changing fmadds to fnmadds where appropriate. Then we no longer require any intermediate
accumulation registers. We can add directly to the upper and lower sums when computing
Uψ′. We offer a practical example to aid in understanding. For each direction, we add to
χu

00r (upper sum, component 00r) the real part of the complex dot product of the first row
and column of U and ψ′, respectively.

χu
00r ← χu

00r + u00rψ
′
00r − u00iψ

′
00i + u01rψ

′
10r − u01iψ

′
10i + u02rψ

′
20r − u02iψ

′
20i

This is straightforward. Let us assume we are computing for the first direction backward.
Then, we subtract the same dot product used to add to χu

00r from 01i of the lower:

χl
01i ← χl

01i +−(u00rψ
′
00r − u00iψ

′
00i + u01rψ

′
10r − u01iψ

′
10i + u02rψ

′
20r − u02iψ

′
20i)

This is how we go about unrolling the multiplication to eschew intermediate sums. We simply
compute the dot product twice, using fmadd and fnmadd where appropriate to account for
the sign changes. Unrolling allows us to carry out the computation using only 5 registers (a
row of ψ′ and a component of U) in addition to the sums.
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This approach results in approximately 23% more cycles spent on vector arithmetic
instructions compared to the 8 RHS approach, but these may be hidden behind load latencies.

5 QPhiX and Code Generator based Approach
QPhiX and its code generator provide an approach to vectorization over multiple sites, but
no MRHS option. We have modified both QPhiX and its code generator to compute the
Dslash operator using 16 RHS. To do so, we modified QPhiX’s memory layout to add an
extra dimension for each site, over which we vectorize. We also customized the threaded loop
over sites in order to experiment with our own site traversal strategies (see Section 6).

In typical SRHS Wilson Dslash, vectorization is done over sites. Thus, each vector
register holds multiple sites’ worth of data. The unmodified code generator generates
intrinsics according to this requirement. We have modified the code generator for our MRHS
implementation to generate intrinsics to vectorize our code on the number of RHS. We also
modified the broadcast of elements of U to only broadcast from a single site’s U . Finally,
we modified the code generator to produce prefetch instructions of gauge field data for the
current site and spinor data for the current and next sites.

For 8 RHS, the approach (pairing, memory layout, etc.) is the same as RegBlk, the only
difference is that the code generator based approach lacks register blocking.

6 Results
Experimental Setup. To optimize our different approaches to Dslash implementation,
we test every combination of the following options: number of RHS (8/16), lattice size
(84/164/244/324), software prefetching (L1/L2/both/none), thread interleaving (interleav-
ing/default), gauge compression (12/16/default), and cache-controlling traversal (CCT/default).

We discuss additional optimization experiments in [2]. In total, we experiment with
over 192 different parameter combinations. In this section we will briefly describe the novel
experimental techniques. Please see the referenced thesis for full details.

Thread interleaving divides a chunk of sites among the threads of a single core instead
of allocating 1

threads_per_core of that chunk of contiguous sites to a single thread (the default
allocation). In the former chunk, threads step over one another in an interleaved pattern.
For example, with 4 threads per core, thread 0 would process sites 0, 4, etc., thread 1 would
process sites 1, 5, and so on. See Figure 3. Compression refers to the size of stored gauge
matrices, as mentioned in Section 2.1. Cache-controlling traversal (CCT) is a method of
lattice traversal (order sites are processed by threads) that aims to increase the effective
size of L2 by performing controlled evictions using the _mm_clevict intrinsic. By traversing
slices of the t dimension one a time, we can use controlled evictions to make room for new
data by explicitly evicting data which we know will not be reused. LRU evictions may result
in eviction of data which could be reused by Dslash. Our t slice traversal makes it possible
to perform controlled evictions in this way.
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(a) (b) 

Thread 1 Thread 2 Thread 3 Thread 4 

Figure 3: (a) Default chunking. Threads process their chunks lexicographically. (b) Inter-
leaved traversal. Threads in a core alternate sites in a lexicographical manner. To divide the
sites thusly, take the plane shown to be the entire lattice.

All kernels were compiled by the Intel C++ compiler version 16.0.0 and run in native
mode on a Xeon Phi 7120P card using 60 cores and 4 threads per core. All experiments were
run in single precision. Unless otherwise noted, results are given in GFLOPS.

6.1 Optimization Results
We begin by discussing the results of our optimization experiments on our kernel implemen-
tations. For a full treatment of these results for RegBlk, please see [2].

Prefetching. As expected, both L1 and L2 prefetching increase performance in almost
all cases. L1 prefetches increase speeds by roughly 20%. L2 prefetches increase speeds by
40–60% with higher increases for larger lattices. The exception is that L2 prefetches decrease
speed by 15% in the case of lattices of volume 84 for both 8 and 16 RHS, but only for our
RegBlk approach and only when 2 MB memory pages are enabled. At 84, for a given core,
all processed sites fit in L2, eliminating the need for these prefetches. Why there is no such
performance change for QPhiX+CoGen is unknown.

Interleaving. Thread interleaving results show consistency for number of RHS but are
inconsistent across lattice volumes. Results show a strong increase for 84, strong decrease for
164, little change for 244, and strong increase for 324. The number of RHS does not strongly
influence this pattern. Results are amplified for our RegBlk approach. We hypothesize that
interleaving results are sensitive to the access pattern of site data, which is consistent for a
given lattice volume.

Compression. Gauge compression results are as expected. In most cases, compression to
16 numbers gives superior performance due to increased arithmetic intensity. The reason that
12-compression fails is that backward U are not stored contiguously. U are associated with
the forward links of one site and those matrices are stored contiguously in memory, indexed
by the linearized index of the site. Backward U are loaded as the (Hermitian conjugate of
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the) forward link of the backward neighbor. These U are thus stored in 4 noncontiguous
locations. Because 12 floats is smaller than the cache line size of KNC (64B), an unused
16B are loaded for every backward 12-compressed U . This results in the same amount of
data being loaded for 12 and 16 compression, but 12-compression performs extra integer
operations. For very small lattices (8 RHS 84), the default (uncompressed) option is superior
because there is an excess of memory bandwidth.

Cache-controlling traversal. Explicit evictions were of no use in either approach.
However, for our RegBlk kernel, CCT without evictions (essentially the blocking scheme of
[11]) increases speeds for lattices of volumes 244 and 324 for both 8 and 16 RHS. A stronger
result is observed for 324. For smaller lattices, the increased number of thread synchronization
barriers overshadows any gains from CCT. We observe a synergistic increase in speed for
324 when also employing interleaved traversal. CCT combined with interleaving increases
speed by 32% higher than CCT and interleaving if we consider their effects additively. This
makes intuitive sense when considering that the access pattern for CCT+interleaving differs
from using either alone. Though we observe improvement using CCT for 244, a different
combination of results is superior. We do not observe the synergistic effect of interleaving
and CCT for 244, which is consistent with interleaving’s ineffectiveness for 244. Again, in the
QPhiX+CoGen approach, we see a similar pattern of results but they are dampened.

Table 1 shows the (condensed) results of our optimization experiments on our kernels.
For the full results of all 192+ combinations of experimental parameters, see [2]. The relative
difference in performance for 8 RHS versus 16 RHS is what we would expect due to the
higher arithmetic intensity of 16 RHS.

RegBlk QPhiX+CoGen
8 RHS 16 RHS 8 RHS 16 RHS

VOL Def Opt Def Opt Def Opt Def Opt
84 579 651 640 708 306 343 385 411

164 405 419 463 473 399 440 392 425
244 300 337 326 375 302 346 289 320
324 255 346 235 387 263 301 243 304

Table 1: Optimization results (GFLOPS). Highest results in bold. Def refers to the unop-
timized base RegBlk or QPhiX+CoGen MRHS implementation. Opt refers to the highest
result achieved using some combination of our optimization techniques.

We should note here that we performed an additional experiment to verify the soundness
of our 16 RHS RegBlk approach. We compared our unrolled approach to a modification using
accumulator registers in place of extra dot products, ignoring spills. Our unrolled approach
performed some 25% better or more in all test cases.
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6.2 Results Comparison
RegBlk vs. QPhiX+CoGen. In all cases, the best results are obtained by our 16 RHS
RegBlk approach. For lattices of size 84 and 164, QPhiX+CoGen 16 RHS performs nearly
as well as the RegBlk approach, if we discount several factors. In the RegBlk approach,
the OpenMP thread spawn is placed outside of the iteration loop, but QPhiX+CoGen
pays the cost of spawning threads on every iteration, which accounts for approximately 150
GFLOPS lost at 84. The remaining difference is accounted for by the L2 prefetching issue
from the previous section. For 324, RegBlk gains a significant amount of performance from
thread interleaving and cache-controlling traversal. QPhiX+CoGen does not show nearly
the same level of performance gain from these options. Because the implementations only
differ meaningfully in the inclusion of register blocking, we surmise the differences observed,
especially in situations with higher cache use (CCT+interleaving at 324), are due to increased
cache pressure caused by register spilling, which is avoided by RegBlk.

VOL MRHS SRHS Speedup
84 708 – –

164 473 251 1.88
244 375 255 1.47
324 387 315 1.23

Table 2: Comparison of highest results by lattice size, MRHS vs. SRHS (GFLOPS).

MRHS vs. SRHS. In Table 2 we compare the best results from our MRHS kernels to
the results of a SRHS kernel using unmodified QPhiX+CoGen which has been tested on
the same hardware setup. We observe a set of speedups consistent with the performance
model we introduced in Section 3. In this model, speedup is dependent on the parameter
RN , the MRHS spinor reuse factor, which is not possible to measure directly. We note that
at maximum reuse (which we estimate to be 7 out of 8 neighbors reused), the achievable
speedup is approximately 2.8. Though we do not have a result for SRHS 84, if we estimate
that number at 251, the speedup for MRHS at 84 would be 2.8. This follows from the lattice
size: at this size, RN is very high because nearly the entire lattice fits into L2. For further
evidence validating our model, consider 16 RHS 164, which has neighbor (read) data equal to
SRHS 324. Considering that the write data also scales with N , we would expect a somewhat
smaller reuse factor for 16 RHS 164. Given the speedup of 1.88, we calculate a reuse factor of
approximately 6 for 16 RHS 164, which is very close to the 7 we assume for SRHS 324.

As the amount of MRHS spinor data scales with N , the reuse factor and speedup drop
quickly. Looking at Table 1, we see that without optimization, speedup for 16 RHS 324 is
below 1.0. Measuring bandwidth at 140 GB/s, we can calculate, using our model, that our
optimizations for RegBlk 16 RHS 324 must have increased RN by a factor of 3.8 in order to
achieve the speedup we did over the default RegBlk 16 RHS implementation.
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7 Conclusions and Future Work
We have presented the optimization of a single precision Dslash kernel for KNC using a
dual approach which included a register blocking hand-coded kernel and a kernel customized
from QPhiX and its code generator. We achieved 29% of peak performance on our target
architecture, KNC, compared to 13% achieved by the previous SRHS kernel. We observed
speedups of 23% and greater in all tested regimes, showing that our kernel is effective on
real world problem sizes. We have shown with a direct comparison that register blocking for
KNC’s VPU may be a critical component of high-performance kernels, as the non-blocked
approach showed dampened ability to gain speedup from advanced cache-blocking techniques
that are required to achieve the kind of spinor reuse necessary for MRHS implementations to
be worthwhile [2].

In our future work, we will continue to optimize our highest performing kernel. We plan
to investigate controlled spilling of registers to test the feasibility of implementing a RegBlk
approach similar to that of 8 RHS for 16 RHS by using strategic stores to L1 to avoid having
to compute extra dot products. We will attempt to increase data reuse in our kernel by
testing more advanced lattice traversal techniques. In the area of QPhiX+CoGen, we will
give the code generator the ability to generate 8 RHS code as it currently does 16 RHS. After
optimization is complete, we will integrate our kernel into a full multi-node LQCD solver.
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