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Abstract. Multiple Kernel Learning (MKL) suffers from slow learning
speed and poor generalization ability. Existing methods seldom address
these problems well simultaneously. In this paper, by defining a multi-
class (pseudo-) likelihood function that accounts for the margin loss for
kernelized classification, we develop a robust Bayesian maximum margin
MKL framework with Dirichlet and the three parameter Beta normal
priors imposed on the kernel and sample combination weights respec-
tively. For inference, we exploit the data augmentation idea and devise
an efficient MCMC algorithm in the augmented variable space, employ-
ing the Riemann manifold Hamiltonian Monte Carlo technique to sample
from the conditional posterior of kernel weights, and making use of local
conjugacy for all other variables. Such geometry and conjugacy based
posterior sampling leads to very fast mixing rate and scales linearly with
the number of kernels used. Extensive experiments on classification tasks
validate the superiority of the proposed method in both efficacy and effi-
ciency.

1 Introduction

Kernel-based machine learning is a popular technique for dealing with nonlinear-
ities in real prediction tasks. The performance of this kind of learning methods
generally is determined by two orthogonal aspects, i.e., the selected kernel func-
tion and the learning principle. On one hand, a kernel function implicitly maps
the input data points to an infinite-dimensional feature space and actually pro-
vides a similarity measure on it. Since the learning process is conducted in the
feature space, the appropriateness of the chosen kernel usually is crucial for the
final modelling quality. On the other hand, the learning principle, e.g., the max-
imum margin principle in Support Vector Machine (SVM), defines the searching
strategy in the hypothesis space, and thus is responsible for model generalization
ability.
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Though (single) kernel selection can be done via cross-validation on the train-
ing data, there are at least two reasons for studying Multiple Kernel Learning
(MKL) [21], an active research topic that aims at learning a linear (or convex)
combination of a set of predefined kernels in order to identify a good target
kernel for the applications (see [17] for a survey). First, from the perspective of
users without sufficient domain knowledge, it is desirable to design algorithms
that can learn effective kernels automatically from data. Second and more impor-
tant, to achieve superior performance it is necessary for many real applications
to fully exploit the rich features underlying each sample. A promising way to
achieve this is to define a large set of kernel mappings on all features and each
individual feature, and then learn the optimal combination of them.

Through the past decade, there have been lots of MKL studies, most of
which were focused on seeking (appropriately regularized) max-margin point
model estimates [9,20,33,34]. Adopting the max-margin principle, these models
essentially have advantage in yielding good generalization performance. How-
ever, their deterministic point estimate formulations make them less robust to
noisy and small training data. Under the Bayesian framework, there already
exist some MKL methods [10,14,15] that estimate the entire posterior distribu-
tion of model weights. Unfortunately, these methods either require matrix inver-
sions to compute the posterior covariance of kernel weights or have to perform
time-consuming importance sampling, and thus scale poorly with the number of
kernels used. Moreover, since the max-margin hinge loss does not lend itself to
a convenient description of a likelihood function, the combination of Bayesian
MKL and max-margin principle has been deemed as intractable for a long time.

In this paper, by defining a multiclass (pseudo-) likelihood function that
accounts for the margin loss for kernelized classification, we develop an efficient
Bayesian maximum margin MKL framework. The Bayesian model averaging
mechanism along with the max-margin principle allow us to make robust predic-
tions with the guarantee of arguably good generalization performance. Moreover,
imposing the sparsity-inducing Three Parameter Beta Normal (TPBN) prior [2]
and the Dirichlet prior on the sample and kernel combination weights respec-
tively, the resultant model has good interpretability and adaptivity. For infer-
ence, we exploit the data augmentation idea and devise an efficient Markov Chain
Monte Carlo (MCMC) algorithm in the augmented variable space, employing
the Riemann manifold Hamiltonian Monte Carlo (HMC) technique to sample
from the conditional posterior of kernel weights, and making use of local con-
jugacy for all other variables. Such geometry and conjugacy based posterior
sampling leads to very fast mixing rate and scales linearly with the number of
kernels used.

Extensive experiments on both binary and multiclass classification data sets
show that the proposed Bayesian max-margin MKL model not only outperforms
a number of competitors consistently in terms of prediction performance but also
requires substantially fewer training time when the number of kernels is large.
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2 Related Work

Compared with traditional kernel methods using a single fixed kernel, MKL pro-
vides a natural way for the automated kernel parameter tuning, the integration
of diverse nonlinear mappings, and the concatenation of heterogeneous data. It
was originally formulated as a semi-definite programming (SDP) problem in [21],
and then improved with the quadratically constrained quadratic programming
(QCQP) [4], and the semi-infinite linear programming (SILP) [34].

Over the past decade, MKL has been actively studied, and a variety of algo-
rithms have been proposed to address the efficiency of MKL, e.g., the adap-
tive 2-norm regularization formulation [32], the extended level method [36], the
group lasso based methods [3,37], the proximal minimization method [35], the
online-batch strongly convex two-stage method [29], the spectral projected gra-
dient descent method [19], and the mean-field variational inference method [15].
Besides, a lot of extended MKL techniques have been proposed to improve the
regular MKL method, e.g., the localized MKL [7,16,38] that achieve local assign-
ments of kernel weights at the group level, the sample-adaptive MKL [24,28]
that switches off kernels at the data sample level, the absent MKL [23] that han-
dles the channel missing problem of individual samples, and the Bayesian MKL
[14,15,22] that estimate the entire posterior distribution of model weights. Our
method differs from existing efficient MKL algorithms in that, it employs the
Riemann manifold HMC technique to sample from the conditional posterior of
kernel weights, and makes use of local conjugacy for all other variables. Such
geometry and conjugacy based posterior sampling leads to very fast mixing rate
and scales linearly with the number of kernels used. Our method also differs from
existing Bayesian MKL model since it is based on the max-margin (pseudo-)
likelihood and data augmentation idea, and tends to has better generalization
performance.

As sparsity-inducing approaches to kernel weight learning rarely outperform
trivial baselines in practical applications [8,20], we choose the Dirichlet prior
for kernel combination weights in our Bayesian MKL framework. Though it has
been considered in [14], our expanded-mean parameterization of the Dirichlet
is particularly suitable for HMC based methods, which is more efficient than
importance sampling based variational approximation. Besides, our choice of
the sparsity-inducing TPBN prior for sample combination weights differs from
the Gaussian-inverse-Gamma prior used in [14,15]. As in kernelized SVM, the
sparse sample weights is responsible for selecting support vectors actually needed
in decision function, and thus good interpretability can be obtained.

We note that the GP-based Bayesian nonlinear SVM model proposed in [18]
adopts a similar data augmentation idea for max-margin learning and infers its
GP kernel parameters automatically with slice sampling. Its difference from ours
is that it was designed for single kernel binary classification, and our model can
be seen as an efficient multiclass multi-kernel extension of it. As detailed in the
following and observed in the experiments, such extension is not trivial.
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3 Bayesian Max-Margin MKL

Suppose we have a set of labeled data D = {xi, yi}N
i=1, where yi ∈ {1, 2, ..., C}

and xi ∈ X , a d-dimensional Euclidean space. MKL algorithms typically use a
weighted sum of P kernels {Km : X ×X → R}P

m=1 to measure data similarity. For
multiclass leaning, we adopt the one-versus-all strategy, and learn a shared kernel
combination weights vector w for all binary sub-problems, which corresponds to
sharing the similarity measure when jointly learn all sub-problems [7,15,33].
Note that, this sharing not only is essential for efficient computation when the
number of classes is large, but also is important to alleviate overfitting when we
only have very few training data. Specifically, we define the following decision
function for the c-th binary sub-problem:

f(xi;Θc) = a�
c

(∑P

m=1
wmKm,·i

)
+ bc (1)

where Km,·i = [Km(xi,x1), ...,Km(xi,xN )]� contains the similarities between xi

and each training example under the kernel feature mapping Km; ac and bc are
the sample weights and bias for the c-th binary sub-problem, respectively; w =
[w1, ..., wP ]� is the kernel weights shared by all sub-problems; Θc = {ac, bc,w}.

3.1 Max-Margin Pseudo-likelihood

To account for the training error on (xi, yi), we further define the following
multiclass max-margin pseudo-likelihood function:

L(yi|Θ) = exp
{

− 2
∑C

c=1
max(ζci, 0)

}
, (2)

where ζci = 1− δyi,cf(xi;Θc), δyi,c = 1 if yi = c and −1 otherwise. This pseudo-
likelihood plays the similar role as that in the Bayesian SVM model [31], which
addressed linear binary classification only. Intuitively, the negative margin losses
of each binary multiple kernel classifier are summed up and passed through
an exponential transformation. The larger the loss, the smaller the likelihood
is. Despite its importance in our Bayesian MKL modeling, (2) makes direct
posterior inference intractable due to the max function in L(Θ). Fortunately,
the following identity holds [1]:

exp{−|ζ|} =
∫ ∞

0

exp{−ζ2

2� − �
2 }√

2π�
d�. (3)

Multiplying through (3) by exp{−ζ} and noting max(ζ, 0) = 1
2 (|ζ|+ζ), we have:

L(yi|Θ) =
C∏

c=1

∫ ∞

0

exp{ −1
2λci

(λci + ζci)2}√
2πλci

dλci, (4)

which allows us to introduce auxiliary variables to the original inference problem.
Thus, by regarding the original posterior as the marginal of a higher dimensional
distribution that involves the augmented variables λ, we can bypass the calcu-
lation of the max function. Consequently, efficient algorithms can be designed.
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3.2 Priors on Model Parameters

Symmetric Dirichlet Prior on Kernel Weights. Under the Bayesian frame-
work, we can impose either Dirichlet [14] or Gaussian [15] prior on w. While
Gaussian prior is convenient for inference, it cannot ensure the positivity of each
kernel weight, which sometimes is difficult for interpretation and even degrades
performance. Thus, we consider the symmetric Dirichlet prior w ∼ Dir(η) for
kernel weights, where η > 0. An asymmetric prior can be used if the user has a
rough idea about kernel importance.

Note that, the Dirichlet prior on kernel weights leads to non-conjugacy even
if we can re-express our pseudo-likelihood as the product of C location-scale
mixtures of normals. Such a non-conjugacy issue generally complicates poste-
rior inference. To address it, many strategies have been used in literature, rang-
ing from variational approximations to Metropolis-Hastings methods. Unlike the
inefficient importance sampling method in [14], we will explore the recently devel-
oped Riemann manifold HMC [13] approach. Exploiting the Riemannian geom-
etry of the parameter space, RHMC can efficiently samples from a continuous
distribution with its unnormalized probability density.

Sparsity-inducing Prior on Sample Weights. Similar as in kernelized SVM,
the sample weights a is often expected to be sparse for selecting support vectors
actually needed in decision function. In this paper, we choose the Three Para-
meter Beta Normal (TPBN) [2] as the sparsity-inducing prior due to its better
mixing properties than priors such as the spike-and-slab, the Student’s-t prior,
and the double exponential prior. The TPBN prior can be expressed as scale
mixtures of normals and favors strong shrinkage of small signals while having
heavy tails to avoid over-shrinkage of the larger signals. If aci ∼ TPBN(αa, βa, κ),
c = 1, ..., C, i = 1, ..., N , then:

aci ∼ N (0, νci), νci ∼ Γ (αa, ςci), ςci ∼ Γ (βa, κ),

where N (·) and Γ (·) denote the Gaussian and Gamma (shape-rate parameter-
ization) distribution respectively. One advantage of this hierarchical shrinkage
prior is the full local conjugacy that allows posterior inference easily imple-
mented. For fixed values of αa and βa, decreasing the parameter κ encourages
stronger shrinkage.

Normal Prior on Biases. Finally, an isotropic normal prior is imposed on the
bias vector b, i.e. b ∼ N (0, τIC), where IC is a C-dimensional identity matrix.

4 Inference via Posterior Sampling

4.1 Augmenting the Posterior

As stated above, (2) makes direct posterior inference intractable due to the max
function in L(Θ). However, it is easy to verify that the posterior of our model is
the marginal of

q(Θ,λ|D) = p0(Θ)
∏N

i=1
L(yi,λ·i|Θ)/Z(D), (5)
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where p0(Θ) is the model prior, λ·i denotes a vector of C augmented variables
(each for one class) for xi, and

L(yi,λ·i|Θ) =
C∏

c=1

exp{ −1
2λci

(λci + ζci)2}√
2πλci

. (6)

The above property indicates that we can bypass the calculation of the max
function through sampling from the augmented posterior (5), and the inter-
ested information about the original posterior can be recovered by discarding λ.
Though (5) still is intractable to compute analytically due to the normalization
constant, it is not difficult to develop MCMC algorithms by making use of local
conjugacy and the Riemann HMC.

4.2 Efficient Geometry-Based MCMC

In the following, we devise a Gibbs sampling algorithm that generates a sample
from the posterior distribution of each variable in turn, conditional on the current
values of the other variables. It can be shown that the sequence of samples
constitutes a Markov chain, and the stationary distribution of that Markov chain
is just the joint posterior.

Given λ, a and b, the conditional (augmented) posterior distribution of w is

q(w|λ,a,b, η,D) ∝ Dir(w; η) ·
∏N

i=1
L(yi,λ·i|Θ),

where L(yi,λ·i|Θ) can be transformed into a Gaussian density of w. Since
the Dirichlet prior is not conjugate to the Gaussian distribution, it is hard
to get the analytical form of the above distribution. To generate a sample
from q(w|λ,a,b, η,D) with its unnormalized density, we appeal to the Rie-
mann Hamiltonian Monte Carlo (RHMC) [13] approach. As in HMC [27], which
simulates the Hamiltonian dynamics, RHMC proposes samples with auxiliary
momentum variables r in a Metropolis-Hastings (MH) framework. The differ-
ence from ordinary HMC is that, RHMC explores the underlying geometry of
the target distribution to accelerate mixing.

In doing so, the problem is that the Dirichlet prior represents our belief that
w should lie on the probability simplex {(w1, ..., wP ) : wm ≥ 0,

∑
m wm = 1} ⊂

RP , which is compact and has boundaries that has to be accounted for when
an update proposes a step that brings the vector outside the simplex. There
are several possible ways to simplify boundary considerations via parameteriz-
ing the probability simplex, and the performance of RHMC depends strongly on
the choice of parameterization. As studied in [30], the expanded-mean parame-
terization yields higher effective sample size and more efficient computation,
so it is adopted here. Specifically, we introduce a P -dimensional unnormal-
ized parameter e with a product of P independent Gamma distributions, i.e.,
p(e) ∝ ∏P

m=1 eη−1
m exp (−em). Setting wm = em/

∑P
m=1 em for m = 1, ..., P , the

prior on w is still Dir(η), while the conditional posterior of e is
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q(e|λ,a,b, η,D) ∝
P∏

m=1

eη−1
m exp (−em) ·

C∏
c=1

N∏
i=1

exp{ −1
2λci

(λci + ζci)2}√
2πλci

,

where ζci = 1−δyi,c

(
a�

c hi +bc

)
, hi =

∑P
m=1

(
em∑
m em

)
·Km,·i, δyi,c = 1 if yi = c

and −1 otherwise.
Then we consider the Hamiltonian H(e, r) = − log q(e|λ,a,b, η,D) + 1

2r
�r,

and use the following transition rule to generate proposals:

r∗ = r + εG(e)− 1
2 ∇ log q(e|λ,a,b, η,D) + ε∇G(e)− 1

2 − εG(e)−1r + ξ, (7)

e∗ = |e + εG(e)− 1
2 r∗|, (8)

where ε is the step size, ξ ∼ N (0, 2εG(e)−1) is the added Gaussian noise, and
G(e) = diag(e)−1 is the Riemann manifold used to precondition the dynamics in
a locally adaptive manner. Note that, the boundary reflection idea (by taking the
absolute value of the proposed new e) is used as in [30] to ensure the positivity.

The other posterior conditional distributions can be derived analytically as
follows using the local conjugacy properties.

For λ: The conditional distribution of λci is a generalized inverse Gaussian
(GIG) distribution:

q(λci|Θ,D) = GIG
(1

2
, 1, ζ2ci

)
. (9)

See [11] for generating random variates from the GIG distribution.

For a, b: The conditional distribution of ac and bc is

q(ac, bc|λ, e,ν, τ,D) ∝ exp
(

− a�
c Λνc·ac − τb2c −

∑
i

(λci + ζci)2

2λci

)
,

a multivariate Gaussian with covariance and mean:

Σ(a,b) =
( [

Λ−1
νc· , 0

0, τ−1

]
+

∑
i

1
λci

[
hi

1

] [
hi

1

]� )−1

, (10)

μ(a,b) = Σ(a,b)

∑
i

(
δyi,c +

δyi,c

λci

) [
hi

1

]
, (11)

where Λνc· = diag(νc·).
For TPBN shrinkage: The conditional distribution of ν and ς are

νci|a, ς ∼ GIG(αa − 1
2
, 2ςci, a2

ci), (12)

ςci|ν, κ ∼ Γ (αa + βa, νci + κ). (13)
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4.3 Prediction

For an instance xnew that is unseen during the above sampling process, the
posterior predictive probability of its label ynew can be estimated as follows:

P (ynew = c|xnew) =
1
T

∑T

t=1
P (ynew = c|xnew, Θ(t)),

P (ynew = c|xnew, Θ(t)) =
exp{f(xnew;Θ(t)

c )}∑C
c=1 exp{f(xnew;Θ(t)

c )}
,

where c ∈ {1, 2, ..., C} is the class label, T is the number of post-convergence
samples Θ(t) obtained from MCMC.

We finally predict the class label of xnew as

ynew = arg max
c

P (ynew = c|xnew).

5 Further Analysis and Efficient Implementation

5.1 More Informative Prior for λ

With (2) and (4), an improper flat prior distribution on [0,∞) is implicitly
imposed on λ. Alternatively, we can impose an exponential prior λ ∼ Exp(γ0) to
restrict λ from taking too large values, which is beneficial to discourage ζ � 0
for correct classifications [18]. Though not so desirable in linear case [31], such
a property is important for robust kernel weights learning in our MKL model,
and generally improves mixing. The corresponding new likelihood is

L′(yi|Θ) =
C∏

c=1

∫ ∞

0

γ0 exp{−γ0λci}√
2πλci

exp
{ (λci + ζci)2

−2λci

}
dλci

=
C∏

c=1

γ0
s

{
exp{−(s + 1)ζci}, if ζci ≥ 0

exp{(s − 1)ζci}, if ζci < 0,

where s =
√

1 + 2γ0 > 1. Note that, the new likelihood always decays faster
when the training samples don’t satisfy the max-margin criterion ζci ≥ 0 for each
binary classification sub-problem, while it also discourages ζ � 0 for correctly
classified samples. When γ0 → 0 (hence s → 1), the hinge loss based pseudo-
likelihood (2) can be recovered. When γ0 � 0 (hence s � 1), L′(yi|Θ) will
behave more like the mechanism behind proximal SVM [26]. For moderate γ0,
this general likelihood is expected to benefit from both sides, thus will be adopted
in our implementation.

For posterior inference, all conditionals remain the same as above, except
that the conditional posterior of λ should be modified as

q(λci|Θ) = GIG
(1

2
, 1 + 2γ0, ζ2ci

)
. (14)
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5.2 Correctness of the Sampler

Here we show the correctness of (7) and (8) using the recent theoretical frame-
work in [25], where a general recipe for constructing MCMC samplers based on
continuous Markov processes was developed. The recipe involves defining a (sto-
chastic) system parameterized by two matrices: a positive semidefinite diffusion
matrix, D(z), and a skew-symmetric curl matrix, Q(z), where z = (e, r) with e
model parameters of interest and r a set of auxiliary variables. The dynamics are
then written explicitly in terms of the target stationary distribution and these
two matrices. It can be verified that (7) and (8) fall within their framework when

D(e, r) =
[
0, 0
0, G(e)−1

]
, Q(e, r) =

[
0, −G(e)−1/2

G(e)−1/2, 0

]
.

5.3 Efficient Implementation

Omitting MH correction in Riemann HMC. Inspired by the stochastic
gradient HMC method [5] and the general stochastic gradient MCMC frame-
work in [25], we can simplify the leapfrog procedure in RHMC and omit the
Metropolis-Hastings correction step by using decreasing step sizes, which guar-
antees the sampler to yield the correct invariant distribution. However, having
to decrease ε to zero comes at the cost of increasingly small updates. We can
also use a finite, small step size in practice, resulting in a biased (but faster)
sampler [25].

Efficiently Sampling. λ and ν: Though directly generating random variates
from the GIG distribution is straightforward according to [11], it can be ineffi-
cient when the data set is very large. In fact, we can make use of the relationship1

between GIG and inverse Gaussian (IG). For λ, it is easy to see λ−1
ci follows the

following inverse Gaussian distribution:

q(λ−1
ci |Θ) = IG

(√
1 + 2γ0
|ζci| , 1 + 2γ0

)
. (15)

For ν, consider the case αa = 1, which leads to

νci|a, ς ∼ GIG
(1

2
, 2ςci, a2

ci

)
. (16)

Consequently, we have

ν−1
ci |a, ς ∼ IG

(√
2ςci

|aci| , 2ςci

)
. (17)

Thus, we can sample from the corresponding IG distribution instead, which
is more efficient and adopted in our implementation.

1 Generally, we have [6]: if λ ∼ GIG(1/2, �, χ), then λ−1 ∼ IG(ϑ, �), where χ = �/ϑ2.
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6 Experiments

We conduct extensive experiments on both binary and multiclass classification
data sets. For each data set, we run 200 MCMC iterations of the proposed
BM3KL model and use the samples collected in the last 20 iterations for pre-
diction. The code for BM3KL was written purely in Matlab and all experiments
were performed on a desktop with 3.2 GHz CPU and 12 GB memory.

6.1 Compared Algorithms and Parameter Settings

We compare BM3KL with the following state-of-the-art kernel-based algorithms:

– A data augmentation based Bayesian nonlinear SVM model (BSVM) [18];
– Bayesian efficient MKL [15] with sparse and non-sparse kernel weights (sBE-

MKL and BEMKL, respectively);
– Maximum Margin Multiple Kernel (M3K) learning [9] for multiclass classifi-

cation;
– Efficient and accurate �p-norm MKL [20], a general max-margin MKL frame-

work with �p-norm constraint on kernel weights. We consider p = 1, 2, 4, ∞
and use its Shogun C++ implementation;

– Online-batch strongly convex MKL (OBSCURE) [29], an efficient two-stage
method which learns an online model for batch initialization;

– SimpleMKL [33], a well-known MKL baseline with max-margin principle.

We perform 5-fold cross-validation on training data sets to select the reg-
ularization parameter C ∈ {10−1, 100, . . . , 104} for SimpleMKL and �p-norm
MKL, and C ∈ {1, 10, 100, 1000} and p ∈ {1.01, 1.05, 1.10, 1.25, 1.50, 1.75, 2} for
OBSCURE, following the instructions in their original papers. The recommended
setting in the publicly available code for BEMKL and sBEMKL is used. The
hyper-parameters of BM3KL are fixed to η = 1, αa = 1, κ = 10−10, τ = 10−4 in
all experiments.

6.2 Binary Classification on Benchmark Data

In this subsection, we evaluate the performance of the proposed BM3KL on
a number of binary classification tasks as shown in Table 1, where five binary
classification tasks were constructed from the TRECVID 2003 data set, which
has five classes of 165-dimensional manually labeled video shots.

Comparison with single kernel machines. Before we systematically com-
pare BM3KL with various MKL algorithms, we first briefly demonstrate the
performance improvements of our multi-kernel method over BSVM [18], which
adopts a similar data augmentation idea and infers its GP kernel parameters
with slice sampling. Following [18], the data sets were normalized to have zero
mean and unit variance, and then randomly split into 10 folds of which one at a
time was used as test set to evaluate models trained on the remaining nine folds.
For MKL, we predefine a pool of 16 kernel functions on each data set, including
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Table 1. The number of instances and the dimensionality for each binary classification
data set.

Data set Ionosphere Sonar Wisconsin Crabs Bupaliver Trecvid03

1vs3 1vs4 3vs4 3vs5 4vs5

#Insance 351 208 683 200 345 393 340 317 303 250

#Dimension 34 60 9 7 6 165 165 165 165 165

13 Gaussian kernels with widths in {2−6, 2−5, . . . , 26} and 3 polynomial kernels
with degrees in {1, 2, 3}. All kernel matrices were normalized to have unit diag-
onal entries (i.e., spherical normalization). Table 2 shows mean accuracy for the
methods under consideration, where the results of BSVM, SVM and Gaussian
Process Classification (GPC) are directly cited from [18], and the results of a
latest Bayesian MKL model (BEMKL) are also listed for reference. For the pro-
posed BM3KL, we fix γ0 = 100 and βa = 0.1 for all data sets. The RHMC step
size ε is set to 0.1 for Sonar, and 0.01 for the others. It is clear that BM3KL can
consistently outperform all other competitors, even without bothersome tuning
of (hyper-) parameters.

Table 2. Comparison with single kernel learning. Listed results are mean test accura-
cies (%) from 10-fold cross validation.

Data set N BSVM SVM GPC sBEMKL BEMKL BM3KL

Ionosphere 315 94.02 94.29 92.59 93.06 92.64 96.11

Sonar 187 88.94 88.46 87.50 85.95 86.53 90.68

Wisconsin 614 97.07 96.93 97.36 97.78 97.79 97.91

Crabs 180 98.50 98.00 97.50 99.00 98.75 99.50

Comparison with various MKL algorithms. We then compare the pro-
posed BM3KL with state-of-the-art MKL algorithms. Following the experimen-
tal settings in [15], we construct Gaussian kernels with 10 different widths
({2−3, 2−2, . . . , 26}) and polynomial kernels with 3 different degrees ({1, 2, 3})
on all features and on each single feature. For the Bupaliver and Sonar data, we
randomly select 70 % of each data set as the training set and use the remaining
as the test set as in [15]. For the binary classification tasks constructed from
Trecvid 2003 (see Sect. 6.3 for its details), the ratio of training/testing split is
20 % vs. 80 % because we have thousands of kernels on them and large train-
ing ratios lead to out of memory. All data sets were normalized to have zero
mean and unit variance, and all base kernel matrices were normalized to have
unit diagonal entries and precomputed before running the algorithm. For the
proposed BM3KL, we set2 γ0 = 500, ε = 0.1/t and select βa ∈ {1, 2, 3} via

2 To get decreasing step sizes, we use t to denote the t-th MCMC iteration.
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Table 3. Comparison of various MKL methods on binary classification tasks. Each ele-
ment in the table shows the mean and standard deviation of testing accuracies/training
times obtained from 20 independent trials. All experiments were conducted in Matlab,
but �p-MKL and OBSCURE called C++ routines. Thus the results of training time
for them may be over optimistic.

5-fold cross-validation for each data set. To get stable results, we independently
repeat the random split of each data set, and then run each algorithm on it, for
20 times. The mean and standard deviation are reported in Table 3 in terms of
testing accuracy and training time.

The superiority of BM3KL over the competitors is evident. When comparing
BM3KL with BEMKL, it is easy to see significant improvements of the former in
terms of prediction performance. We attribute this to the max-margin principle
underlying our model and its more accurate MCMC-based inference rather than
variational approximation with mean-field assumption. As to the computational
complexity, BM3KL and BEMKL scale linearly and cubically with the number
of kernels P respectively, while they both scale cubically with the number of
training samples N . Consequently, as we observed, BEMKL needs considerable
more training time when P is large (e.g., on Trecvid03).

Another thing worth to mention is that, with a simple and fixed Dirich-
let prior on kernel weights, BM3KL can consistently outperform �p-MKL and
OBSCURE. This indicates that the superiority of our method is not brought
in by solely regularizing the weights. We believe this is owing to the inherent
advantages of our Bayesian max-margin modeling, and the Riemann manifold
based HMC method.
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Fig. 1. Multiclass classification performance comparison on protein subcellular local-
ization data sets. All results are averaged over 10 independent trials.

6.3 Multiclass Classification

Protein Subcellular Localization. We first consider three biological data sets
(Plant, PsortPos, and PsortNeg) that have been widely used to compare MKL
algorithms. The numbers of data instances in Plant, PsortPos, and PsortNeg are
940, 541, and 1444, respectively, while the numbers of data classes are 4, 4, and 5,
respectively. For each of these three data sets, 69 biologically motivated sequence
kernels [40] are used and the corresponding base kernel matrices are provided
online3. To replicate the experiments of a latest multiclass max-margin multiple
kernel classification model (M3K) [9], all kernel matrices were first centered and
then normalized to have unit diagonal entries, and the training split fractions
for Plant, PsortPos, and PsortNeg were set as 0.5, 0.8, and 0.65, respectively.
As above, we set γ0 = 500, ε = 0.1/t, and select βa ∈ {1, 2, 3} via 5-fold cross-
validation. Then we independently repeat the random split of each data set and
run each algorithm on it, for 10 times. The mean testing accuracies and the
standard deviations are shown in Fig. 1, where the results of M3K are directly
cited from [9]. From the results we can see, (1) BM3KL achieves highest mean
accuracy on each data set; (2) sometimes the performance differences are not
so significant since the training sample ratios are large enough; (3) BM3KL has
advantage in terms of robustness.

Video shots classification. The TRECVID 2003 data set has 1078 manually
labeled video shots which are categorized into 5 classes. Each of the video shots
is represented by a 165-dimensional vector of HSV color histogram. To fully
exploit the rich features underlying each sample, we define a large set of kernel
mappings on all features and each individual feature, and then learn the optimal
combination of them. Specifically, we construct Gaussian kernels with 13 differ-
ent widths ({2−6, 2−5, . . . , 26}) and polynomial kernels with 3 different degrees
({1, 2, 3}) on the 165-dimensional vectors, and construct Gaussian kernels with
7 different widths ({2−3, 2−2, . . . , 23}) on each single feature. This gives us 1171
kernels in total (to avoid out of memory, we didn’t consider even more kernels).

3 http://raetschlab.org//suppl/protsubloc.

http://raetschlab.org//suppl/protsubloc
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As in [12,39], the entire data set was evenly split into training and testing sets.
We independently repeat the random split and run each algorithm on it, for 10
times. Here γ0 = 500, ε = 0.1/t, and βa = 0.5. The mean testing accuracies
and the standard deviations are shown in Fig. 2(a), from which we can observe
significant advantage of BM3KL. Note that, these results are also significantly
better than those reported in [12,39], where max-margin supervised subspace
learning was studied.
Face recognition. The ORL data set contains 10 different face images for each
of 40 distinct subjects. For some subjects, the images were taken at different
times with varying lighting and facial details (open/closed eyes, smiling/not smil-
ing, glasses/no glasses). All the images were taken against a dark homogeneous
background with the subjects in an upright, frontal position, and were manually
aligned, cropped and resized to 32 × 32 pixels. We construct Gaussian kernels
with 13 different widths ({2−6, 2−5, . . . , 26}) and polynomial kernels with 3 dif-
ferent degrees ({1, 2, 3}) on the 1024-dimensional pixel vectors, and construct
Gaussian kernels with 2 different widths ({21, 22}) and polynomial kernel with
degree 2 on each single pixel. This gives us 3088 kernels in total (to avoid out of
memory, we didn’t consider even more kernels). For the training sample ratio,
we consider two cases, i.e., 0.2 and 0.7 (accordingly, we have 80 and 280 training
samples respectively). We independently repeat the random splits and run each
algorithm on them, for 10 times. Here γ0 = 10000, ε = 0.01, and βa = 0.1.
The mean testing accuracies and the standard deviations are shown in Fig. 2(b)
and (c), from which we see obvious advantages of BM3KL again.
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(c) ORL, N = 280

Fig. 2. Multiclass classification performance comparison on vision data sets. All results
are averaged over 10 independent trials.

6.4 Time Efficiency and Convergence Rate

As shown in Table 3 and Fig. 3, the training time efficiency of the proposed
BM3KL is either significantly better than or comparable with the state-of-the-art
MKL algorithms on all considered data sets. Note that here we couldn’t directly
compare with M3K since its code is not publicly available. But as shown in [9]
it generally needs several times more training time than OBSCURE.
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Fig. 3. Training time efficiency comparison on multiclass classification data sets. All
results are averaged over 10 independent trials conducted in Matlab, but �p-MKL and
OBSCURE called C++ routines. Thus the results for them may be over optimistic.

Specifically, it is observed that BM3KL generally is more efficient than
BEMKL, a latest Bayesian MKL model focusing on efficient inference [15]. The
reason is that BEMKL has to perform matrix inversion to compute the poste-
rior covariance of kernel weights in each round of iteration while it is avoided in
BM3KL via employing Riemann HMC. Besides, enjoying the Bayesian modelling
advantages, BM3KL achieves even faster learning speed than the optimization-
based point estimate methods. We attribute this to the fast convergence rate of
our geometry and local conjugacy based approximate posterior sampling, which
is depicted in Fig. 4.

0 50 100 150 200
0.81

0.82

0.83

0.84

0.85

Number of iterations

Te
st

 a
cc

ur
ac

y

(a) Sonar

0 50 100 150 200
0.55

0.6

0.65

0.7

0.75

Number of iterations

Te
st

 a
cc

ur
ac

y

(b) TRECVID 2003

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Number of iterations

Te
st

 a
cc

ur
ac

y

(c) ORL, N = 80

Fig. 4. Convergence rate of the approximate posterior sampling of BM3KL on Sonar,
TRECVID 2003 and ORL (N = 80). All settings are the same as above except that the
single sample of model weights obtained in each MCMC iteration is used for prediction
on each data set.

7 Conclusion and Future Work

By defining a multiclass (pseudo-) likelihood function that accounts for the mar-
gin loss for kernelized classification, we have developed a robust Bayesian max-
margin MKL framework with Dirichlet and TPBN priors imposed on the kernel
and sample weights respectively. Employing Riemann manifold HMC to sample
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from the conditional posterior of kernel weights, and making use of local con-
jugacy for all other variables, an efficient MCMC algorithm in the augmented
variable space is devised. Extensive experiments on both binary and multiclass
data sets show that the proposed classification model not only outperforms a
number of competitors consistently but also requires substantially fewer train-
ing time when the number of kernels is large. In future, we plan to apply our
framework to multi-kernel regression analysis.
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