Skip to main content

A New Look at Musical Expectancy: The Veridical Versus the General in the Mental Organization of Music

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9617))

Abstract

This paper takes a step back from what we label ‘problem solving’ approaches to the psychology of music memory and processing. In contrast with generalised expectation theories of music processing, a hypothesis is proposed which is based on the idea that mental representations of music are largely based on a large library of individual pieces: Case-based memory. We argue that it is the activation of these memories that forms the critical aspect of musical experience. Furthermore, a specific hypothesis is proposed that it is possible to represent any new piece of music through the chaining together of different, pre-existing veridical segments of music, in contrast with ‘problem solving by generalization’ which determines expectation based on statistical/stylistic/schematic factors. By adjusting segment length, or by forming new segments through repeated listenings, new music can be absorbed into an existing, growing mental database by chaining together existing veridical segments that match the incoming stimulus.

This paper is based on Schubert, E., & Pearce, M. (2015). Veridical Chaining: A case-based memory matching approach to the mental organization of music. In M. Aramaki, R. Kronland-Martinet & S. Ystad & (Eds.), 11th International Symposium on Computer Music Multidisciplinary Research (CMMR) (pp. 428–440).

This is a preview of subscription content, log in via an institution.

References

  1. Bharucha, J., Curtis, M., Paroo, K.: Varieties of musical experience. Cognition 100, 131–172 (2006)

    Google Scholar 

  2. Bharucha, J.J.: Tonality and expectation. In: Aiello, R., Sloboda, J.A. (eds.) Musical Perceptions, pp. 213–239. Oxford University Press, London (1994)

    Google Scholar 

  3. Bharucha, J.J., Todd, P.M.: Modeling the perception of tonal structure with neural nets. Comput. Music J. 13, 44–53 (1989)

    Google Scholar 

  4. Bharucha, J.J.: Music cognition and perceptual facilitation: a connectionist framework. Music Percept. 5, 1–30 (1987)

    Google Scholar 

  5. Pearce, M.T., Wiggins, G.A.: Improved methods for statistical modelling of monophonic music. J. New Music Res. 33, 367–385 (2004)

    Google Scholar 

  6. Pearce, M.T., Wiggins, G.A.: Expectation in melody: the influence of context and learning. Music Percept. 23, 377–405 (2006)

    Google Scholar 

  7. Wiggins, G.A., Pearce, M.T., Müllensiefen, D.: Computational modelling of music cognition and musical creativity. In: Dean, R. (ed.) Oxford Handbook of Computer Music and Digital Sound Culture, pp. 383–420. Oxford University Press, Oxford (2009)

    Google Scholar 

  8. Temperley, D.: The Cognition of Basic Musical Structures. MIT Press, Cambridge (2001)

    Google Scholar 

  9. Temperley, D.: A probabilistic model of melody perception. Cogn. Sci. 32, 418–444 (2008)

    Google Scholar 

  10. Huron, D.: Sweet Anticipation: Music and the Psychology of Expectation. MIT Press, Cambridge (2006)

    Google Scholar 

  11. Folkestad, G.: Digital tools and discourse in music: the ecology of composition. In: Hargreaves, D.J., Miell, D.E., MacDonald, R.A.R. (eds.) Musical Imaginations, pp. 193–205. Oxford University Press, Oxford (2012)

    Google Scholar 

  12. Hargreaves, D.J.: Musical imagination: perception and production, beauty and creativity. Psychol. Music 40, 539–557 (2012)

    Google Scholar 

  13. MacDonald, R.A., Hargreaves, D.J., Miell, D.: Musical identities. In: Hallam, S., Cross, I., Thaut, M. (eds.) The Oxford Handbook of Music Psychology, pp. 462–470. Oxford University Press, Oxford (2009)

    Google Scholar 

  14. Lamont, A.: Musical identities and the school environment. In: MacDonald, R.A.R., Hargreaves, D.J., Miell, D. (eds.) Musical Identities, pp. 41–59. Oxford University Press, Oxford, UK (2002)

    Google Scholar 

  15. Gjerdingen, R.O., Perrott, D.: Scanning the dial: the rapid recognition of music genres. J. New Music Res. 37, 93–100 (2008)

    Google Scholar 

  16. Plazak, J., Huron, D.: The first three seconds. Musicae Sci. 15, 29–44 (2011)

    Google Scholar 

  17. Schellenberg, E.G., Iverson, P., Mckinnon, M.C.: Name that tune: identifying popular recordings from brief excerpts. Psychon. Bull. Rev. 6, 641–646 (1999)

    Google Scholar 

  18. Schubert, E.: Reconsidering expectancy and implication in music: the veridical chaining hypothesis. In: Ginsborg, J., Lamont, A. (eds.) Ninth Triennial Conference of the European Society for the Cognitive Sciences of Music, RNCM, Manchester, UK (2015)

    Google Scholar 

  19. Narmour, E.: The top-down and bottom-up systems of musical implication: building on Meyer’s theory of emotional syntax. Music Percept. 9, 1–26 (1991)

    Google Scholar 

  20. Meyer, L.B.: Emotion and Meaning in Music. University of Chicago Press, Chicago (1956)

    Google Scholar 

  21. Schubert, E.: Enjoyment of negative emotions in music: an associative network explanation. Psychol. Music 24, 18–28 (1996)

    Google Scholar 

  22. Schubert, E.: Loved music can make a listener feel negative emotions. Musicae Sci. 17, 11–26 (2013)

    Google Scholar 

  23. Schubert, E., North, A.C., Hargreaves, D.J.: Toward a theory of music aesthetics: the affect-space framework. Psychology of Aesthetics, Creativity, and the Arts (submitted)

    Google Scholar 

  24. Martindale, C., Moore, K.: Priming, prototypicality, and preference. J. Exp. Psychol. Hum. Percept. Perform. 14, 661–670 (1988)

    Google Scholar 

  25. Martindale, C.: Aesthetics, psychobiology, and cognition. In: Farley, F.H., Neperud, R.W. (eds.) The foundations of Aesthetics, Art, & Art Education, pp. 7–42 (1988)

    Google Scholar 

  26. Martindale, C.: The pleasures of thought: a theory of cognitive hedonics. J. Mind Behav. 5, 49–80 (1984)

    Google Scholar 

  27. West, A., Moore, K., Martindale, C., Rosen, K.: Prototypicality and preference. Bullet. Br. Psychol. Soc. 36, A138–A138 (1983)

    Google Scholar 

  28. Schubert, E., Hargreaves, D.J., North, A.C.: A dynamically minimalist cognitive explanation of musical preference: is familiarity everything? Front. Psychol. 5, 38 (2014)

    Google Scholar 

  29. Schubert, E.: The fundamental function of music. Musicae Sci. 13, 63–81 (2009–2010)

    Google Scholar 

  30. Davies, S.: Musical Meaning and Expression. Cornell University Press, Ithaca (1994)

    Google Scholar 

  31. Hammond, K.J., Seifert, C.M.: A cognitive science approach to case-based planning. In: Chipman, S., Meyrowitz, A.L. (eds.) Foundations of Knowledge Acquisition: Cognitive Models of Complex Learning, vol. 194, pp. 245–267. Springer, Berlin (1993)

    Google Scholar 

  32. Tomkins, S.S.: Script theory: differential magnification of affects. In: Howe, H.E., Dienstbier, R.A. (eds.) Nebraska Symposium on Motivation, vol. 26, pp. 201–236. University of Nebraska Press, Lincoln (1979)

    Google Scholar 

  33. Schank, R.C., Abelson, R.P.: Scripts, Plans, Goals and Understanding: An Inquiry into Human Knowledge Structures. Lawrence Erlbaum, Hillsdale (1977)

    MATH  Google Scholar 

  34. Riesbeck, C.K., Schank, R.C.: Inside Case-Based Reasoning. Lawrence Erlbaum Associates, Hillsdale (1989)

    Google Scholar 

  35. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, San Mateo (1993)

    MATH  Google Scholar 

  36. Somers, H.: Translation memory systems. In: Somers, H. (ed.) Computers and Translation: A Translator’s Guide, pp. 31–48. Benjamins, Amsterdam (2003)

    Google Scholar 

  37. Finnäs, L.: How can musical preferences be modified - a research review. Bullet. Counc. Res. Music Educ. 102, 1–58 (1989)

    Google Scholar 

  38. Hargreaves, D.J., Hargreaves, J.J., North, A.C.: Imagination and creativity in music listening. In: Hargreaves, D., Miell, D., MacDonald, R. (eds.) Musical Imaginations: Multidisciplinary perspectives on creativity, performance and perception, pp. 156–172. Oxford University Press, Oxford (2012)

    Google Scholar 

  39. Dowling, W.J., Harwood, D.L.: Music Cognition. Academic Press, London (1986)

    Google Scholar 

  40. Narmour, E.: The Analysis and Cognition of Basic Melodic Structures: The Implication-Realization Model. University of Chicago Press, Chicago (1990)

    Google Scholar 

  41. Bharucha, J.J., Stoeckig, K.: Priming of chords: spreading activation or overlapping frequency spectra? Percept. Psychophys. 41, 519–524 (1987)

    Google Scholar 

  42. Collins, A.M., Loftus, E.F.: Spreading activation theory of semantic processing. Psychol. Rev. 82, 407–428 (1975)

    Google Scholar 

  43. Oja, E.: Simplified neuron model as a principal component analyzer. J. Math. Biol. 15, 267–273 (1982)

    MathSciNet  MATH  Google Scholar 

  44. Zajonc, R.B.: Attitudinal effects of mere exposure. J. Pers. Soc. Psychol. 9, 1–27 (1968)

    Google Scholar 

  45. Zajonc, R.B.: Mere exposure: a gateway to the subliminal. Curr. Dir. Psychol. Sci. 10, 224–228 (2001)

    Google Scholar 

  46. Stewart, J.: Calculus, Concepts and Contexts. Brooks, Brooks/Cole, Belmont (2009)

    Google Scholar 

  47. Smith, E.R., Zarate, M.A.: Exemplar and prototype use in social categorization. Soc. Cogn. 8, 243–262 (1990)

    Google Scholar 

  48. Griffiths, T.L., Canini, K.R., Sanborn, A.N., Navarro, D.J.: Unifying rational models of categorization via the hierarchical Dirichlet process. In: Proceedings of the 29th Annual Conference of the Cognitive Science Society, pp. 323–328 (2007)

    Google Scholar 

  49. Pearce, M.T.: The construction and evaluation of statistical models of melodic structure in music perception and composition. Doctoral dissertation, Department of Computing, City University, London, UK (2005)

    Google Scholar 

  50. Bunton, S.: Semantically motivated improvements for PPM variants. Comput. J. 40(2/3), 76–93 (1997)

    Google Scholar 

  51. Cleary, J.G., Teahan, W.J.: Unbounded length contexts for PPM. Comput. J. 40(2/3), 67–75 (1997)

    Google Scholar 

  52. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)

    MathSciNet  MATH  Google Scholar 

  53. Justus, T.C., Bharucha, J.J.: Modularity in musical processing: the automaticity of harmonic priming. J. Exp. Psychol. Hum. Percept. Perform. 27, 1000–1011 (2001)

    Google Scholar 

  54. Tillmann, B., Bigand, E.: Musical structure processing after repeated listening: schematic expectations resist veridical expectations. Musicae Sci. 14, 33–47 (2010)

    Google Scholar 

Download references

Acknowledgments

This research was supported by a Fellowship from the Australian Research Council (FT120100053) held by author ES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emery Schubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Schubert, E., Pearce, M. (2016). A New Look at Musical Expectancy: The Veridical Versus the General in the Mental Organization of Music. In: Kronland-Martinet, R., Aramaki, M., Ystad, S. (eds) Music, Mind, and Embodiment. CMMR 2015. Lecture Notes in Computer Science(), vol 9617. Springer, Cham. https://doi.org/10.1007/978-3-319-46282-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46282-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46281-3

  • Online ISBN: 978-3-319-46282-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics