
Prediction of Web Services Evolution

Hanzhang Wang1, Marouane Kessentini1(✉), and Ali Ouni2

1 Computer and Information Science Department, University of Michigan, Ann Arbor, USA
{hanzhang,marouane}@umich.edu

2 Graduate School of Information Science and Technology, Osaka University, Suita, Japan
ali@ist.osaka-u.ac.jp

Abstract. Web service interfaces are considered as one of the critical compo‐
nents of a Service-Oriented Architecture (SOA) and they represent contracts
between web service providers and clients (subscribers). These interfaces are
frequently modified to meet new requirements. However, these changes in a web
service interface typically affect the systems of its subscribers. Thus, it is impor‐
tant for subscribers to estimate the risk of using a specific service and to compare
its evolution to other services offering the same features in order to reduce the
effort of adapting their applications in the next releases. In addition, the prediction
of interface changes may help web service providers to better manage available
resources (e.g. programmers’ availability, hard deadlines, etc.) and efficiently
schedule required maintenance activities to improve the quality. In this paper, we
propose to use machine learning, based on Artificial Neuronal Networks, for the
prediction of the evolution of Web services interface design. To this end, we
collected training data from quality metrics of previous releases from 6 Web
services. The validation of our prediction techniques shows that the predicted
metrics value, such as number of operations, on the different releases of the 6
Web services were similar to the expected ones with a very low deviation rate.
In addition, most of the quality issues of the studied Web service interfaces were
accurately predicted, for the next releases, with an average precision and recall
higher than 82 %. The survey conducted with active developers also shows the
relevance of prediction technique for both service providers and subscribers.

Keywords: Web services evolution · Prediction · Quality of services

1 Introduction

Service-based systems heavily depend on the interface of selected services used to
implement specific features. However, service providers do not know, in general, the
impact of their changes, during the evolution Web services, on the applications of
subscribers. The subscribers are reluctant, in general, to use Web services that are risky
and not stable [10]. Thus, analyzing and predicting Web service changes is critical but
also challenging because of the distributed and dynamic nature of services. As a conse‐
quence, recent studies were proposed to understand the evolution of Web services espe‐
cially at the interface level [9, 10, 19].

© Springer International Publishing Switzerland 2016
Q.Z. Sheng et al. (Eds.): ICSOC 2016, LNCS 9936, pp. 282–297, 2016.
DOI: 10.1007/978-3-319-46295-0_18



The few existing work studying the evolution of Web services are limited to the
detection of changes between different releases [9] or the analysis of the types of change
introduced to the service interfaces. Romano et al. [10] proposed a tool called WSDLDiff
to detect changes between different versions of a Web service interface based on struc‐
tural and textual similarities measure. Fokaefs et al. [9] suggested another tool, called
VTracker, which uses XML differencing techniques, to detect changes in WSDL docu‐
ments. However, both tools are just limited to the detection of changes between different
Web service releases and did not target the problem of predicting future changes or
providing recommendations to the service providers or subscribers about the quality of
services interface based on the collected data.

We use, in this paper, the changes collected from previous Web service releases to
address the following problems. Most of the changes in a web service interface typically
affect the systems of its subscribers. Thus, it is important for subscribers to estimate the
risk of using a specific service and compare its evolution to other services offering the
same features in order to reduce the effort of adapting their applications in the next
releases. Subscribers prefer to use, in general, Web services that are stable with a low
risk to include bugs and introduce major revisions in the future. In addition, the predic‐
tion of interface changes may help web service providers to better manage available
resources (e.g. programmers’ availability) and efficiently schedule required maintenance
activities to improve the quality of developed services. In fact, the prediction of Web
service changes can be used to identify potential quality issues that may occur in the
future releases. Thus, it is easier to fix these quality issues as early as possible before
that they become more complex.

In this work, we propose a machine learning approach based on Artificial Neural
Networks (ANN) [5] to predict the evolution of Web services interface from the history
of previous releases’ metrics. The predicted interface metrics value are used to predict
and estimate the risk and the quality of the studied Web services. We evaluated our
approach on a set of 6 popular Web services including more than 90 releases. We report
the results on the efficiency and effectiveness of our approach to predict the evolution
of Web services interfaces and provide useful recommendations for both service
providers and subscribers. The results indicate that the prediction results of several Web
service metrics, on the different releases of the 6 Web services, were similar to the
expected ones with very low deviation rate. Furthermore, most of the quality issues of
Web service interfaces were accurately predicted, for the next releases, with an average
precision and recall higher than 82 %. The survey conducted with a set of developers
also shows the relevance of prediction technique for both service providers and
subscribers.

The remainder of this paper is as follows: Sect. 2 presents the related work; Sect. 3
gives an overview about the proposed predictive modelling technique; Sect. 4 discusses
the obtained evaluation results and possible threats of validity of our experiments.
Finally, Sect. 5 concludes and proposes future research directions.

Prediction of Web Services Evolution 283



2 Related Work

We summarize, in this section, the existing work that focus on studying the evolution
of Web services.

Fokaefs et al. [9] used the VTracker tool to calculate the minimum edit distance
between two trees representing two WSDL files. The outcome of the tool is the
percentage of interface changes such as added, changed and removed elements among
the XML models of two WSDL interfaces. Romano et al. [10] proposed a similar tool
called WSDLDiff that can identify fewer types of change than VTracker that may help
to analyze the evolution of a WSDL interface without manually inspecting the XML
changes. Aversano et al. [11] analyzed the relationships between sets of services change
during the service evolution based on formal concept analysis. The main focus of the
study is to extract relationships among services.

Several studies have been proposed to measure the similarity between different Web
services to search for relevant ones or classify them but not to analyze their evolution.
Xing et al. [12] suggested a tool, called UMLDiff to detect differences between different
UML diagram versions to understand their evolution. Zarras et al. [13] detected evolu‐
tion patterns and regularities by adapting Lehman’s laws of software evolution. The
study was focused only on Amazon Web Services (AWS).

Based on this overview of existing work in the area of Web services evolution, the
problem of predicting the evolution of Web services was not addressed before. In addi‐
tion, the use of machine learning algorithms in Web services was limited to the classi‐
fication of Web Services and their messages into ontologies [22]. These existing machine
learning-based studies are not concerned with the analysis of the releases within the
same Web service but more about mining different Web services (one release per
service) to classify them in order to help the composition of services process for the
subscribers based on their requirements.

Another category of related work focus on detecting and specifying antipatterns in
SOA and Web services which is a relatively new area. Rotem-Gal-Oz described the
symptoms of a range of SOA antipatterns [15]. Kral et al. [18] listed seven “popular”
SOA antipatterns that violate accepted SOA principles. A number of research works
have addressed the detection of such antipatterns. Recently, Moha et al. [20] have
proposed a rule-based approach called SODA for SCA systems (Service Component
Architecture). Later, Palma et al. [19] extended this work for Web service antipatterns
in SODA-W using declarative rule specification based a domain-specific language
(DSL) to specify/identify the key symptoms that characterize an antipattern using a set
of WSDL metrics. Rodriguez et al. [14, 15] and Mateos et al. [16] provided a set of
guidelines for service providers to avoid bad practices while writing WSDLs based on
eight bad practices in the writing of WSDL for Web services. Recently, Ouni et al. [7]
proposed a search-based approach based on standard GP to find regularities, from exam‐
ples of Web service antipatterns, to be translated into detection rules.

In the next section, we describe the adaptation of the ANN algorithm to the prediction
of the evolution of Web services.

284 H. Wang et al.



3 Prediction of Web Services Evolution Using Artificial Neural
Networks

As described in Fig. 1, our technique takes as input the previous releases of the Web
service interfaces to predict its evolution, an exhaustive list of metrics to predict, and a
list of detection rules to detect potential future quality issues, called Web service anti‐
patterns, based on the predicted metrics. Ou approach generates as output the set of
predicted evolution metrics values and possible future quality issues for the next release.

Fig. 1. Prediction approach: overview

Our prediction model is based on machine learning algorithm using Aritificial Neural
Network (ANN) model. In the following we describe the ANN adaptation to our Web
services evolution prediction problem.

Artificial Neural Network (ANN): ANN models are mathematical models inspired
by the functioning of nervous systems [2–5], which are composed by a number of inter‐
connected entities, the artificial neurons. ANNs are based on learning which is a char‐
acteristic of adaptive systems which are capable of improving their performance on a
problem as a function of previous experience [1]. An ANN builds a map between a set
of inputs and the corresponding outputs. This model can deal with non-linear regression
analysis with noisy signals and also incomplete data. In this work, we used a Multi-
Layer Perception ANN (MLP-ANN) [2]. It is well-known that MLP-ANNs are universal
approximators, which makes them attractive for modeling black-box functions for which
little information about their form is known. The output of each neuron is expressed as
follows:

where w denotes the weight vector, a is the input vector, b is the bias,  is the activation
function, and n is the number of neurons in the hidden layer. A hidden neuron influences
the network outputs only for those inputs that are near to its center, therefore requiring
an exponential number of hidden neurons to cover entirely the input space. For this
reason, it is suggested that MLP-ANN are suitable for problems with a small number of
inputs like our prediction of Web services evolution problem.

We applied the ANN as being among the most reliable predictive models, especially,
in the case of noisy and incomplete data. Its architecture is chosen to be a multilayered

Prediction of Web Services Evolution 285



architecture in which all neurons are fully connected; weights of connections have been,
randomly, set at the beginning of the training. Regarding the activation function, the
sigmoid function is applied [5] as being adequate in the case of continuous data. The
network is composed of three layers: the first layer is composed of p input neurons. Each
neuron is assigned the value . The hidden layer is composed of a set of hidden neurons.
The learning algorithm is an iterative algorithm that allows the training of the network.
Its performance is controlled by two parameters. The first parameter is the momentum
factor that tries to avoid local minima by stabilizing weights. The second factor is the
learning rate which is responsible of the rapidity of the adjustment of weights.

Learning process. Before the learning process, the data used in the training set should
be normalized. In our case, we choose to apply the min-max technique since it is among
the most accurate techniques according to [8]. In our adapation, we used the following
list of metrics from the literature [7] to predict for the next Web service releases, as
described in Table 1.

Table 1. Web service interface metrics used.

Metric name Definition
NPT Number of port types
NOD Number of operations declared
NAOD Number of accessor operations declared
NOPT Average number of operations in port types
ANIPO Average number of input parameters in operations
ANOPO Average number of output parameters in operations
NOM Number of messages
NBE number of elements of the schemas
NCT Number of complex types
NST Number of primitive types
NBB Number of bindings
NBS Number of services
NPM Number of parts per message
NIPT Number of identical port types
NIOP Number of identical operations
COH Cohesion
COU Coupling
AMTO Average meaningful terms in operation names
AMTM Average meaningful terms in message names
AMTMP Average meaningful terms in message parts
AMTP Average meaningful terms in port-type names
ALOS Average length of operations signature
ALPS Average length of port-types signature
ALMS Average length of message signature

286 H. Wang et al.



During the learning process, our ANN solutions are represented as follows: let us
denote by O the matrix that includes numerical values related to the set of metrics to
predict. O is composed of n lines and p columns where n is equal to the number of metrics
to predict and p is equal to the number of steps (releases).

Learning technique. There are several learning algorithms, depending on whether the
ANN model is linear or non-linear. Our MLP model utilizes a supervised learning tech‐
nique called back-propagation (BP) for training the network. MLP is a modification of
the standard linear perceptron and can distinguish data that are not linearly separable.
BP is one of the most popular and common training procedures used, that is described
in depth in the literature [5]. Our BP neural network has been trained with moderate
values for the learning rate (α) and momentum (μ). The weights are recalculated every
time a training vector is presented to the network. The exit strategy or the termination
condition for the network is based on the sum square error until it reaches a certain
threshold assigned prior to running the network. Our implementation is based on the
Weka1 framework with it default configuration.

4 Experiments

In order to evaluate the ability of our prediction framework to efficiently predict the
evolution trends of Web services, we conducted a set of experiments based on six widely
used Web services. In this section, we first present our research questions, the experi‐
ments setup and then describe and discuss the obtained results. Finally, we discuss some
threats related to our experiments.

4.1 Research Questions and Evaluation Metrics

We defined the following three research questions that address the applicability,
performance, and the usefulness of our Web services prediction approach. The three
research questions are as follows:

RQ1: To what extent can our approach predict correctly the evolution of Web serv‐
ices?
RQ2: To what extent can our approach predict Web service quality issues?
RQ3: Can our prediction results be useful for developers?

1 http://www.cs.waikato.ac.nz/ml/weka.

Prediction of Web Services Evolution 287

http://www.cs.waikato.ac.nz/ml/weka


To answer RQ1, we calculated the deviation between the actual expected metrics
value and the predicted ones using our ANNs algorithm on different Web service relases.
To this end, we considered the list of metrics described in the previous section. The error
rate is defined as follows:

where PM is the predicted metric value using ANNs and EM is the expected value. We
calculated the error rate for one and many steps (releases) over time for every of the
considered Web services.

To answer RQ2, we calculated precision and recall scores to compare between the
predicted Web services antipatterns and the expected ones:

We considered five types of antipatterns from the literature [20]: Multi-service (MS:
a service implementing many operations), Nano-service (NS: too-fine grained service),
Chatty-service (CS: a service including many fine-grained operations), Data-service
(DS: a service including only data access operations) and Ambigous service (AS: a
service including ambiguous names of operations). More details about existing Web
service antipatterns can be found in the following references [19, 20]. We used the
manually defined rules in [7] to detect the predicted and actual Web service antipatterns.

To answer RQ3, we used a post-study questionnaire that collects the opinions of
developers on our prediction results. We also wished to assess how these results may
help developers working on services-based applications. To this end, we asked 24 soft‐
ware developers, including 11 developers working in a Web development startup and
providing some Web services for customers from the automotive industry sector. The
remaining participants are 13 graduate students (8 MSc and 5 PhD students) in Software
Engineering at the University of Michigan-Dearborn. 9 out the 13 students are working
either full-time or part-time programmers in Software industry. All the participants are
volunteers and have a minimum of 2 years experience as a developer. The participants
were first asked to fill out a pre-study questionnaire containing five questions. The ques‐
tionnaire helped to collect background information such as their role within the
company, their programming experience, their familiarity with Web services and
service-based applications. In addition, all the participants attended one lecture about
Web service antipatterns and passed five tests to evaluate their performance to evaluate
the desing of Web services using quality metrics.

288 H. Wang et al.



4.2 Studied Web Services

We selected these 6 Web services for our validation because different releases of their
WSDL interface are publicly available and belong to different categories. Table 2
provides some descriptive statistics about these six Web services:

• Amazon EC2: Amazon Elastic Compute Cloud is a web service that offers resizable
compute capacity in the cloud. In this study we have considered a total of 44 releases
from 2006 until 2014.

• Amazon Simple Queue Service (Amazon SQS) offers reliable hosted queues for
storing messages exchanged between computers. We considered in our study a total
of 6 releases.

• Fedex Track service offers accurate update of the status of shipments. We used 10
releases from this Web service.

• FedEx Ship Service: the Ship Service provides functionalities for managing package
shipments and their options. A total of 17 releases are considered in our experiments
from this Web service.

• FedEx Rate Service: the Rate Service provides the shipping rate quote for a specific
service combination depending on the origin and destination information supplied in
the request. We used 18 releases for our prediction algorithm.

• Amazon Mechanical Turk Requester: it is a web service that provides an on-demand,
scalable, human workforce to complete jobs that humans can do better than
computers such as recognizing objects in photos. We used 15 releases developed
between 2005 until 2012.

Table 2. Web service statistics

Web service name # Releases Average number of
antipatterns

Amazon EC2 44 134
Amazon Mechanical Turk 15 61
Amazon Simple Queue 6 21
FedEx Rate Service 18 17
FedEx Ship Service 17 82
FedEx Track Service 10 44

4.3 Results

Results for RQ1. Figures 2, 3 and 4 summarize the outcome for the first research ques‐
tion. Most of the Web service metrics were predicted accurately on the different Web
services with an average error rate lower than 2.8 as described in Fig. 3. For Fedex Track
service and Fedex Rate service, the average error rate is the highest. This could be related
to the lower training set comparing to the other services. For Amazon EC2, the metrics
were predicted with a minimum deviation score of 2.1 due to the large training set

Prediction of Web Services Evolution 289



available for this service. However, Amazon Simple Queue has one of the lowest devi‐
ation score of 1.8. This confirms that our prediction results are independent from the
size of the Web services to evaluate and the training data.

Fig. 2. Average error rate (e_rate) on the different Web services

Fig. 3. Average error rate (e_rate) per metric on the different Web services

290 H. Wang et al.



Fig. 4. Average error rate (e_rate) of the different metrics on the Web services (except Amazon
Simple Queue) per prediction step

Figure 3 shows more detailed results of the average error rate by metric. The results
clearly support the claim that our results are independent from the type of metric to
predict. However, the error rate depends on the range of every metric. For example, it
is expected that the number of operations per service may get the highest error rate since
the variation of this metric is high and its range is larger than the other metrics.

Figure 4 describes the ability of our algorithm to predict the metrics value not only
for the next release but for up-to the next 5 releases. In fact, the obtained results on the
different Web services (except Amazon Simple Queue, not considered due to the limited
number of releases) clearly show that the error rate for the 5th upcoming release is
minimal with a score less than 4.5.

To answer the first research question, our approach is able to predict the evolution
of Web service metrics with a high accuracy.

Results for RQ2. Figures 5, 6 and 7 summarize our findings. Overall, most of the
expected quality issues (Web service antipatterns) for the next release were identified
as described in Fig. 5. Our prediction algorithm were able to detect Web service anti‐
patterns on the different services with an average precision and recall respectively higher
than 84 % and 86 %. For Fedex Ship service and Amazon Mechanical Turk, the precision
is higher than for the other systems with more than 88 %. This can be explained by the
fact that these systems are smaller than others and contain a lower number of antipatterns
to predict. For FedEx Rate Service, the precision is also high (around 82 %), i.e., most
of the predicted antipatterns are correct. This confirms that our precision results are
independent from the size of the Web services to evaluate. For Amazon EC2, the preci‐
sion is one of the lowest (81 %) but still acceptable. Amazon EC2 contains a high number
of ambiguous services that are difficult to detect using metrics.

Prediction of Web Services Evolution 291



Fig. 5. Average precision and recall of the predicted antipatterns on the different Web services

Fig. 6. Figure 5. Average precision and recall per antipattern type on the different Web services

292 H. Wang et al.



Fig. 7. Average precision and recall on the Web services (except Amazon Simple Queue) per
prediction step

The same observations are valid for the recall. The average recall on the six Web
services was higher than 86 %. For Fedex Track service and Amazon EC2, the precision
is higher than for the other systems with more than 90 %. This can be explained by the
fact that these systems are using more training data than others. For FedEx Ship Service,
the precision is also high (around 81 %), thus the impact of the size of the training data
was not high on the quality of the prediction results. An interesting observation is that
the obtained precision and recall scores are conflicting since the services with the highest
precision scores received the lowest recall. However, both scores are acceptable for all
the Web services.

One key strength of our technique is the ability to predict quality issues not only for
the next release but for up-to the next 5 releases as described in Fig. 7. In fact, the
obtained results clearly show that both precision and recall are still high for all the Web
services when predicting quality issues for the 5th upcoming release with an average
higher than 73 %. We did not consider in our evaluation the Amazon Simple Queue due
to the limited number of available releases.

To summarize, it is clear based on the obtained results that our approach predict Web
service quality issues with a high accuracy.

Results for RQ3. To answer RQ3, we used a post-study questionnaire to the opinions
of the participants about their experience in using our prediction tool and results. The
questionnaire asked participants to rate their agreement on a Likert scale from 1
(complete disagreement) to 5 (complete agreement) with the following statements:

• The predicted metrics value are useful to estimate the risk and cost of using a specific
Web service and may help the developer to select the best service based on his
preferences.

Prediction of Web Services Evolution 293



• The predicted quality issues may help developers and managers to better schedule
maintenance activities and reduce the cost of fixing these issues.

The agreement of the participants was 4.6 and 4.8 for the first and second statements
respectively. This confirms the usefulness of our prediction results for the developers
considered in our experiments.

The remaining questions of the post-study questionnaire were about the benefits and
also limitations (possible improvements) of our prediction approach. We summarize in
the following the feedback of the developers. Most of the participants mention that our
results may help developers of the service providers to decide when to refactor their
Web service implementations. For example, they can consider to perform some refac‐
torings when the prediction results show that the quality issue may become much more
severe after few releases such as a multi-service antipattern. Thus, the developers liked
the functionality of our tool that helps them to identify refactoring opportunities as early
as possible.

The participants found our tool helpful for also the developers of Service-based
applications. In fact, the majority of the participants mention that they consider the
stability and quality of services as important critieria to select a Web service when
several options are available. The non-stability of a service may negatively impact their
systems in the future and it is maybe an indication that the used service includes many
bugs explaining several new releases. Furthermore, the subject liked the prediction of
antipatterns feature since it is easier for them to evaluate the quality of Web services in
next releases based on the number of antipatterns rather than analyzing a set of metrics.

The participants also suggested some possible improvements to our prediction
approach. Some participants believe that it will be very helpful to extend the tool by
adding a new feature to automatically calculate the risk, cost and benefits of using
different possible Web services. Another possibly suggested improvement is to use some
visualization techniques to evaluate the evolution of the We services to easily estimate
their stability.

4.4 Threats to Validity

There are four types of threats that can affect the validity of our experiments. We consider
each of these in the following paragraphs.

Conclusion validity is concerned with the statistical relationship between the treat‐
ment and the outcome. The parameter tuning of the ANNs used in our experiments
creates a threat that we need to evaluate in our future work. The parameters’ values used
in our experiments are found by trial-and-error. However, it would be an interesting
perspective to design an adaptive parameter tuning strategy for our approach so that
parameters are updated during the execution in order to provide the best possible
performance.

Internal validity is concerned with the causal relationship between the treatment and
the outcome. We used a set of manually defined rules for the detection of possible future
quality issues in the next releases [19]. However, the obtained results depends on the

294 H. Wang et al.



used rules and some of the predicted quality issues may not be important antipatterns to
fix by the service provider’s developers.

Construct validity is concerned with the relationship between theory and what is
observed. To evaluate the relevance of our prediction results, we interviewed a group
of developers. For the selection threat, the participant diversity in terms of experience
could affect the results of our study. We addressed the selection threat by making sure
that all the participants have almost the same experience in web development and famil‐
iarity with Web services. For the fatigue threat, we did not limit the time to fill the
questionnaire and we also sent the questionnaires to the participants by email and gave
them the required time to complete each of the required tasks.

External validity refers to the generalizability of our findings. In this study, we
performed our experiments on six widely used Web services belonging to different
domains and having different sizes. However, we cannot assert that our results can be
generalized to other Web services, and to other practitioners. Future replications of this
study are necessary to confirm our findings. In addition, our study was limited to the use
of specific metrics. Future replications of this study are necessary to confirm our findings.

5 Conclusion and Future Work

We proposed, in this paper, an approach to predict the evolution of Web services. In
fact, it is maybe important for subscribers to estimate the risk of using a selected service
and compare its evolution to other possible services offering the same features. Further‐
more, the prediction of future changes may help web service providers to better manage
available resources and efficiently schedule required maintenance activities to improve
the quality. In this paper, we propose to use machine learning, based on Artificial
Neuronal Networks, for the prediction of the evolution of Web services interface design.
To validate the proposed approach, we collected training data from quality metrics of
previous releases from 6 Web services. The validation of our prediction techniques
shows that the predicted metrics value, such as number of operations, on the different
releases of the 6 Web services were similar to the expected ones with a very low deviation
rate. In addition, most of the quality issues of the studied Web service interfaces were
accurately predicted, for the next releases, with an average precision and recall higher
than 82 %. The survey conducted with developers also shows the relevance of prediction
technique for both service providers and subscribers.

Future work involves validate our prediction technique with additional metrics, Web
services and developers to conclude about the general applicability of our methodology.
Furthermore, in this paper we only focused on the prediction of Web services evolution.
We plan to extend the approach by defining new risk measures based on the predicted
metrics value. In addition, we will study of the impact of predicted quality issues on the
usability and popularity of Web services over time.

Prediction of Web Services Evolution 295



References

1. Simon, H.A.: Why should machines learn? (Chap. 2). In: Michalski, R.S., Carbonell, J.G.,
Mitchell, T.M. (eds.) Machine Learning. Tioga, Palo Alto (1983)

2. Gardner, M.W., Dorling, S.R.: Artificial neural networks (the multilayer perceptron). Atmos.
Environ. 32, 2627–2636 (1998)

3. Cobourn, W., Dolcine, L., French, M., Hubbard, M.: A comparison of nonlinear regression
and neural network models for ground-level ozone forecasting. J. Air Waste Manag. Assoc.
4, 19–68 (2001)

4. Agirre-Basurko, E., Ibarra-Berastegi, G., Madariaga, I.: Regression and multilayer
perceptron-based models to forecast hourly O3 and NO2 levels in the Bilbao area. Environ.
Model Softw. 21, 430–446 (2006)

5. Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan College Publishing
Company, New York (1994)

6. Ouni, A., Kessentini, M., Inoue, K.: Search-based web service antipatterns detection. In: IEEE
Transactions on Services Computing, pp. 1–21. IEEE (2016, to appear)

7. Ouni, A., Gaikovina, K.R., Kessentini, M., Inoue, K.: Web service antipatterns detection
using genetic programming. In: 24th ACM Genetic and Evolutionary Computation
Conference (GECCO), pp. 1351–1358 (2015)

8. Al Shalabi, L., Shaaban, Z., Kasasbeh, B.: Data mining: a preprocessing engine. J. Comput.
Sci. 2(9), 735–739 (2006)

9. Fokaefs, M., Mikhaiel, R., Tsantalis, N., Stroulia, E., Lau, A.: An empirical study on web
service evolution. IEEE International Conference on Web Services (ICWS11), pp. 261–269.
IEEE (2011)

10. Romano, D., Pinzger, M.: Analyzing the evolution of web services using fine-grained
changes. In: 19th IEEE International Conference on Web Services, ICWS, Honolulu, pp. 392–
399 (2012)

11. Aversano, L., Di Penta, M., Falanga, A., Scognamiglio, R.: Visualizing the evolution of web
services using formal concept analysis. In: Eighth International Workshop on Principles of
Software Evolution, pp. 57–60 (2005)

12. Xing, Z., Stroulia, E.: UMLDiff: an algorithm for object-oriented design differencing. In:
Proceedings of the 20th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2005), pp. 54–65. ACM, New York (2005)

13. Zarras, A.V., Vassiliadis, P., Dinos, I.: Keep calm and wait for the spike! Insights on the
evolution of amazon services. In: Proceedings of the 28th International Conference on
Advanced Information Systems Engineering (CAiSE), (2016, to appear)

14. Rodriguez, J.M., Crasso, M., Mateos, C., Zunino, A.: Best practices for describing,
consuming, and discovering web services: a comprehensive toolset. Softw. Pract. Experience
43(6), 613–639 (2013)

15. Rodriguez, J.M., Crasso, M., Zunino, A., Campo, M.: Automatically detecting opportunities
for web service descriptions improvement. In: Cellary, W., Estevez, E. (eds.) Software
Services for e-World. IFIP AICT, vol. 341, pp. 139–150. Springer, Heidelberg (2010)

16. Mateos, C., Rodriguez, J.M., Zunino, A.: A tool to improve code-first web services
discoverability through text mining techniques. Softw. Pract. Experience 45(7), 925–948
(2015)

17. Rotem-Gal-Oz, A., Bruno, E., Dahan, U.: SOA Patterns, pp. 38–62. Manning Publications,
Greenwich (2012)

18. Kral, J., Zemlicka, M.: Popular SOA antipatterns. In: Future Computing, Service
Computation, Cognitive, Adaptive, Content, Patterns, pp. 271–276. IEEE (2009)

296 H. Wang et al.



19. Palma, F., Moha, N., Tremblay, G., Guéhéneuc, Y.-G.: Specification and detection of SOA
antipatterns in web services. In: Avgeriou, P., Zdun, U. (eds.) ECSA 2014. LNCS, vol. 8627,
pp. 58–73. Springer, Heidelberg (2014)

20. Moha, N., Palma, F., Nayrolles, M., Conseil, B.J., Guéhéneuc, Y.-G., Baudry, B., Jézéquel,
J.-M.: Specification and detection of SOA antipatterns. In: Liu, C., Ludwig, H., Toumani, F.,
Yu, Q. (eds.) Service Oriented Computing. LNCS, vol. 7636, pp. 1–16. Springer, Heidelberg
(2012)

21. Oldham, N., Thomas, C., Sheth, A.P., Verma, K.: METEOR-S web service annotation
framework with machine learning classification. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC
2004. LNCS, vol. 3387, pp. 137–146. Springer, Heidelberg (2005)

22. Klusch, M., Kapahnke, P., Zinnikus, I.: SAWSDL-MX2: a machine-learning approach for
integrating semantic web service matchmaking variants. IEEE International Conference on
Web Services, ICWS 2009, pp. 275–288. IEEE (2009)

Prediction of Web Services Evolution 297


	Prediction of Web Services Evolution
	Abstract
	1 Introduction
	2 Related Work
	3 Prediction of Web Services Evolution Using Artificial Neural Networks
	4 Experiments
	4.1 Research Questions and Evaluation Metrics
	4.2 Studied Web Services
	4.3 Results
	4.4 Threats to Validity

	5 Conclusion and Future Work
	References


