Skip to main content

Quantum Field Theoretical Approach to the Electrical Conductivity of Graphene

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (ruSMART 2016, NEW2AN 2016)

Abstract

The longitudinal and transverse electrical conductivities of graphene are calculated at both zero and nonzero temperature starting from the first principles of thermal quantum field theory using the polarization tensor in (2+1)-dimensional space-time. An expression for the universal conductivity of graphene found previously using different phenomenological approaches is confirmed. Both exact and approximate asymptotic expressions for the real and imaginary parts of the conductivity of graphene are derived and compared with the results of numerical computations. The obtained results can be used in numerous applications of graphene, such as in optical detectors, transparent electrodes and nanocommunications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katsnelson, M.I.: Graphene: Carbon in Two Dimensions. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  2. Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  Google Scholar 

  3. Jiang, X., et al.: Anti-reflection graphene coating on metal surface. Surf. Coat. Technol. 261, 327–330 (2015)

    Article  Google Scholar 

  4. Watcharotone, S., et al.: Graphene-silica composite thin films as transparent conductors. Nano Lett. 7, 1888–1892 (2007)

    Article  Google Scholar 

  5. Vajtai, R. (ed.): Springer Handbook of Nanomaterials. Springer, Berlin (2013)

    Google Scholar 

  6. Gusynin, V.P., Sharapov, S.G.: Transport of Dirac quasiparticles in graphene: hall and optical conductivities. Phys. Rev. B 73, 245411-1–245411-18 (2006)

    Article  Google Scholar 

  7. Katsnelson, M.I.: Zitterbewegung, chirality, and minimal conductivity of graphene. Eur. Phys. J. B 51, 157–160 (2006)

    Article  Google Scholar 

  8. Ziegler, K.: Robust transport properties of graphene. Phys. Rev. Lett. 97, 266802-1–266802-4 (2006)

    Article  Google Scholar 

  9. Falkovsky, L.A., Varlamov, A.A.: Space-time dispersion of graphene conductivity. Eur. Phys. J. B 56, 281–284 (2007)

    Article  Google Scholar 

  10. Stauber, T., Peres, N.M.R., Geim, A.K.: Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B 78, 085432-1–085432-8 (2008)

    Google Scholar 

  11. Pedersen, T.G.: Optical response and exitons in gaped graphene. Phys. Rev. B 79, 113406-1–113406-4 (2009)

    Google Scholar 

  12. Lewkowicz, M., Rosenstein, B.: Dynamics of particle-hole pair creation in graphene. Phys. Rev. Lett. 102, 106802-1–106802-4 (2009)

    Article  Google Scholar 

  13. Palacios, J.J.: Origin of quasiuniversality of the minimal conductivity of graphene. Phys. Rev. B 82, 165439-1–165439-6 (2010)

    Article  Google Scholar 

  14. Moriconi, L., Niemeyer, D.: Graphene conductivity near the charge neutral point. Phys. Rev. B 84, 193401-1–193401-5 (2011)

    Article  Google Scholar 

  15. Buividovich, P.V., et al.: Numerical study of the conductivity of graphene monolayer within the effective field theory approach. Phys. Rev. B 86, 045107-1–045107-8 (2012)

    Google Scholar 

  16. Dartora, C.A., Cabrera, G.G.: \(U(1)\times SU(2)\) gauge invariance leading to charge and spin conductivity of Dirac fermions in graphene. Phys. Rev. B 87, 165416-1–165416-5 (2013)

    Article  Google Scholar 

  17. Louvet, T., Delplace, P., Fedorenko, A.A., Carpentier, D.: On the origin of minimal conductivity at a band crossing. Phys. Rev. B 92, 155116-1–155116-11 (2015)

    Article  Google Scholar 

  18. Merano, M.: Fresnel coefficients of a two-dimensional atomic crystals. Phys. Rev. A 93, 013832-1–013832-5 (2016)

    Article  Google Scholar 

  19. Tan, Y.-W., et al.: Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. Lett. 99, 246803-1–246803-4 (2007)

    Google Scholar 

  20. Nair, R.R., et al.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  Google Scholar 

  21. Li, Z., et al.: Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys. 4, 532–535 (2008)

    Article  Google Scholar 

  22. Mak, K.F., et al.: Measurement of optical conductivity of graphene. Phys. Rev. Lett. 101, 196405-1–196405-4 (2008)

    Article  Google Scholar 

  23. Horng, J., et al.: Drude conductivity of Dirac fermions in graphene. Phys. Rev. B 83, 165113-1–165113-5 (2011)

    Article  Google Scholar 

  24. Bordag, M., Fialkovsky, I.V., Gitman, D.M., Vassilevich, D.V.: Casimir interaction between a perfect conductor and graphene described by the Dirac model. Phys. Rev. B 80, 245406-1–245406-5 (2009)

    Article  Google Scholar 

  25. Fialkovsky, I.V., Marachevsky, V.N., Vassilevich, D.V.: Finite-temperature Casimir effect for graphene. Phys. Rev. B 84, 035446-1–035446-10 (2011)

    Article  Google Scholar 

  26. Bordag, M., Klimchitskaya, G.L., Mostepanenko, V.M.: Thermal Casimir effect in the interaction of graphene with dielectrics and metals. Phys. Rev. B 86, 165429-1–165429-14 (2012)

    Article  Google Scholar 

  27. Chaichian, M., Klimchitskaya, G.L., Mostepanenko, V.M., Tureany, A.: Thermal Casimir-Polder interaction of different atoms with graphene. Phys. Rev. A 86, 012515-1–012515-9 (2012)

    Article  Google Scholar 

  28. Klimchitskaya, G.L., Mostepanenko, V.M.: Van der Waals and Casimir interactions between two graphene sheets. Phys. Rev. B 87, 075439-1–075439-7 (2013)

    Article  Google Scholar 

  29. Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: Theory of Casimir interaction from graphene-coated substrates using the polarization tensor and comparison with experiment. Phys. Rev. B 89, 115419-1–115419-8 (2014)

    Google Scholar 

  30. Klimchitskaya, G.L., Mostepanenko, V.M.: Observability of thermal effects in the Casimir interaction from graphene-coated substrates. Phys. Rev. A 89, 052512-1–052512-7 (2014)

    Google Scholar 

  31. Klimchitskaya, G.L., Mostepanenko, V.M., Sernelius, B.E.: Two approaches for describing the Casimir interaction in graphene: density-density correlation function versus polarization tensor. Phys. Rev. B 89, 125407-1–125407-9 (2014)

    Google Scholar 

  32. Klimchitskaya, G.L., Mostepanenko, V.M.: Comparison of hydrodynamic model of graphene with recent experiment on measuring the Casimir interaction. Phys. Rev. B 91, 045412-1–045412-5 (2015)

    Google Scholar 

  33. Klimchitskaya, G.L., Mostepanenko, V.M.: Origin of large thermal effect in the Casimir interaction between two graphene sheets. Phys. Rev. B 91, 174501-1–174501-10 (2015)

    MATH  Google Scholar 

  34. Klimchitskaya, G.L.: Quantum field theory of the Casimir force for graphene. Int. J. Mod. Phys. A 31, 1641026-1–1641026-13 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Klimchitskaya, G.L., Mostepanenko, V.M., Petrov, V.M.: Reflectivity properties of graphene and graphene-coated substrates. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) Internet of Things, Smart Spaces, and Next Generation Networks and Systems, pp. 451–458. Springer, Cham (2014)

    Google Scholar 

  36. Bordag, M., Klimchitskaya, G.L., Mostepanenko, V.M., Petrov, V.M.: Quantum field theoretical description for the reflectivity of graphene. Phys. Rev. D 91, 045037-1–045037-19 (2015)

    Google Scholar 

  37. Klimchitskaya, G.L., Korikov, C.C., Petrov, V.M.: Theory of reflectivity properties of graphene-coated material plates. Phys. Rev. B 92, 125419-1–125419-9 (2015)

    Google Scholar 

  38. Sernelius, B.E.: Retarded interactions in graphene systems. Phys. Rev. B 85, 195427-1–195427-10 (2012)

    Article  Google Scholar 

  39. Sernelius, B.E.: Casimir effect in systems containing \(2D\) layers, like graphene and \(2D\) electron gases. J. Phys.: Condens. Matter 27, 214017-1–214017-25 (2015)

    Google Scholar 

  40. Falkovsky, L.A., Pershoguba, S.S.: Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B 76, 153410-1–153410-4 (2007)

    Article  Google Scholar 

  41. Bordag, M., Fialkovsky, I.V., Vassilevich, D.V.: Enhanced Casimir effect for doped graphene. Phys. Rev. B 93, 075414-1–075414-5 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor M. Petrov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Klimchitskaya, G.L., Mostepanenko, V.M., Petrov, V.M. (2016). Quantum Field Theoretical Approach to the Electrical Conductivity of Graphene. In: Galinina, O., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. ruSMART NEW2AN 2016 2016. Lecture Notes in Computer Science(), vol 9870. Springer, Cham. https://doi.org/10.1007/978-3-319-46301-8_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46301-8_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46300-1

  • Online ISBN: 978-3-319-46301-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics