Abstract
Process model matching refers to the automatic identification of corresponding activities between two process models. It represents the basis for many advanced process model analysis techniques such as the identification of similar process parts or process model search. A central problem is how to evaluate the performance of process model matching techniques. Often, not even humans can agree on a set of correct correspondences. Current evaluation methods, however, require a binary gold standard, which clearly defines which correspondences are correct. The disadvantage of this evaluation method is that it does not take the true complexity of the matching problem into account and does not fairly assess the capabilities of a matching technique. In this paper, we propose a novel evaluation method for process model matching techniques. In particular, we build on the assessment of multiple annotators to define probabilistic notions of precision and recall. We use the dataset and the results of the Process Model Matching Contest 2015 to assess and compare our evaluation method. We find that our probabilistic evaluation method assigns different ranks to the matching techniques from the contest and allows to gain more detailed insights into their performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Antunes, G., Bakhshandeh, M., Borbinha, J., Cardoso, J., Dadashnia, S., Francescomarino, C.D., Dragoni, M., Fettke, P., Gal, A., Ghidini, C., Hake, P., Khiat, A., Klinkmüller, C., Kuss, E., Leopold, H., Loos, P., Meilicke, C., Niesen, T., Pesquita, C., Péus, T., Schoknecht, A., Sheetrit, E., Sonntag, A., Stuckenschmidt, H., Thaler, T., Weber, I., Weidlich, M.: The process model matching contest 2015. In: 6th International Workshop on Enterprise Modelling and Information Systems Architectures (2015)
Berlin, J., Motro, A.: Autoplex: automated discovery of content for virtual databases. In: Batini, C., Giunchiglia, F., Giorgini, P., Mecella, M. (eds.) CoopIS 2001. LNCS, vol. 2172, pp. 108–122. Springer, Heidelberg (2001). doi:10.1007/3-540-44751-2_10
Cayoglu, U., Dijkman, R., Dumas, M., Fettke, P., Garcıa-Banuelos, L., Hake, P., Klinkmüller, C., Leopold, H., Ludwig, A., Loos, P., et al.: The process model matching contest 2013. In: 4th International Workshop on Process Model Collections: Management and Reuse (PMC-MR 2013) (2013)
Cayoglu, U., Oberweis, A., Schoknecht, A., Ullrich, M.: Triple-S: a matching approach for Petri nets on syntactic, semantic and structural level. Technical report, Karlsruhe Institute of Technology (KIT) (2013)
Do, H.-H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In: Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (eds.) NODe 2002. LNCS, vol. 2593, pp. 221–237. Springer, Heidelberg (2003). doi:10.1007/3-540-36560-5_17
Dumas, M., Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process Management. Springer, Heidelberg (2013)
Ehrig, M., Euzenat, J.: Relaxed precision and recall for ontology matching. In: Proceedings of K-Cap 2005 Workshop on Integrating Ontology, pp. 25–32. No commercial editor (2005)
Giunchiglia, F., Shvaiko, P., Yatskevich, M.: Semantic matching. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 2561–2566. Springer, New York (2009)
Jin, T., Wang, J., La Rosa, M., Ter Hofstede, A., Wen, L.: Efficient querying of large process model repositories. Comput. Ind. 64(1), 41–49 (2013)
Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Increasing recall of process model matching by improved activity label matching. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 211–218. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40176-3_17
Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity – a proper metric. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 166–181. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23059-2_15
Küster, J.M., Koehler, J., Ryndina, K.: Improving business process models with reference models in business-driven development. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 35–44. Springer, Heidelberg (2006). doi:10.1007/11837862_5
La Rosa, M., Dumas, M., Uba, R., Dijkman, R.: Business process model merging: an approach to business process consolidation. ACM Trans. Softw. Eng. Methodol. (TOSEM) 22(2), 11 (2013)
Leopold, H., Niepert, M., Weidlich, M., Mendling, J., Dijkman, R., Stuckenschmidt, H.: Probabilistic optimization of semantic process model matching. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 319–334. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32885-5_25
Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval, vol. 1. Cambridge University Press, Cambridge (2008)
Mena, E., Kashyap, V., Illarramendi, A., Sheth, A.: Imprecise answers in distributed environments: Estimation of information loss for multi-ontology based query processing. Int. J. Coop. Inf. Syst. 9(04), 403–425 (2000)
Modica, G., Gal, A., Jamil, H.M.: The use of machine-generated ontologies in dynamic information seeking. In: Batini, C., Giunchiglia, F., Giorgini, P., Mecella, M. (eds.) CoopIS 2001. LNCS, vol. 2172, pp. 433–447. Springer, Heidelberg (2001). doi:10.1007/3-540-44751-2_32
Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J. 10(4), 334–350 (2001)
Rolland, C., Prakash, N., Benjamen, A.: A multi-model view of process modelling. Requir. Eng. 4(4), 169–187 (1999)
Sagi, T., Gal, A.: Non-binary evaluation for schema matching. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 477–486. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34002-4_37
Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)
Uba, R., Dumas, M., GarcÃa-Bañuelos, L., Rosa, M.: Clone detection in repositories of business process models. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 248–264. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23059-2_20
Weidlich, M., Dijkman, R., Mendling, J.: The ICoP framework: identification of correspondences between process models. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 483–498. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13094-6_37
Weidlich, M., Sheetrit, E., Branco, M.C., Gal, A.: Matching business process models using positional passage-based language models. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 130–137. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41924-9_12
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Kuss, E., Leopold, H., van der Aa, H., Stuckenschmidt, H., Reijers, H.A. (2016). Probabilistic Evaluation of Process Model Matching Techniques. In: Comyn-Wattiau, I., Tanaka, K., Song, IY., Yamamoto, S., Saeki, M. (eds) Conceptual Modeling. ER 2016. Lecture Notes in Computer Science(), vol 9974. Springer, Cham. https://doi.org/10.1007/978-3-319-46397-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-46397-1_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46396-4
Online ISBN: 978-3-319-46397-1
eBook Packages: Computer ScienceComputer Science (R0)