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Abstract. Egocentric cameras are becoming increasingly popular and
provide us with large amounts of videos, captured from the first person
perspective. At the same time, surveillance cameras and drones offer an
abundance of visual information, often captured from top-view. Although
these two sources of information have been separately studied in the
past, they have not been collectively studied and related. Having a set of
egocentric cameras and a top-view camera capturing the same area, we
propose a framework to identify the egocentric viewers in the top-view
video. We utilize two types of features for our assignment procedure.
Unary features encode what a viewer (seen from top-view or recording
an egocentric video) visually experiences over time. Pairwise features
encode the relationship between the visual content of a pair of view-
ers. Modeling each view (egocentric or top) by a graph, the assignment
process is formulated as spectral graph matching. Evaluating our method
over a dataset of 50 top-view and 188 egocentric videos taken in different
scenarios demonstrates the efficiency of the proposed approach in assign-
ing egocentric viewers to identities present in top-view camera. We also
study the effect of different parameters such as the number of egocentric
viewers and visual features.

Keywords: Egocentric vision · Surveillance · Spectral graph matching ·
Gist · Cross-domain image understanding

1 Introduction

The availability of large amounts of egocentric videos captured by cellphones and
wearable devices such as GoPro cameras and Google Glass has opened the door
to a lot of interesting research in computer vision [1–3]. At the same time, videos
captured with top-down static cameras such as surveillance cameras in airports
and subways, unmanned aerial vehicles (UAVs) and drones, provide us with a
lot of invaluable information about activities and events taking place at different
locations and environments. Relating these two complementary, but drastically
different sources of visual information can provide us with rich analytical power,
and help us explore what can not be inferred from each of these sources taken
separately. Establishing such a relationship can have several applications. For
example, athletes can be equipped with body-worn cameras, and their egocentric
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videos together with the top-view videos can offer new data useful for better
technical and tactical sport analysis. Moreover, due to the use of wearable devices
and cameras by law enforcement officers, finding the person behind an egocentric
camera in a surveillance network could be a useful application. Furthermore,
fusing these two types of information can result in better 3D reconstruction of
an environment by combining the top-view information with first person views.

The first necessary step to utilize information from these two sources, is to
establish correspondences between the two views. In other words, a matching
between egocentric cameras and the people present in the top-view camera is
needed. In this effort, we attempt to address this problem. More specifically,
our goal is to localize people recording egocentric videos, in a top-view reference
camera. To the best of our knowledge, such an effort has not been done so far.
In order to evaluate our method, we designed the following setup. A dataset
containing several test cases is collected. In each test case, multiple people were
asked to move freely in a certain environment and record egocentric videos.
We refer to these people as ego-centric viewers. At the same time, a top-view
camera was recording the entire scene/area including all the egocentric viewers
and possibly other intruders. An example case is illustrated in Fig. 1.

Fig. 1. Left shows a set of 5 egocentric videos. Right shows a top-view video capturing
the whole scene. The viewers are highlighted using red circles in the top-view video.
We aim to answer the two following questions: (1) Does this set of egocentric videos
belong to the viewers visible in the top-view video? (2) Assuming they do, which viewer
is capturing which egocentric video? (Color figure online)

Given a set of egocentric videos and a top-view surveillance video, we try
to answer the following two questions: (1) Does this set of egocentric videos
belong to the viewers visible in the top-view camera? (2) If yes, then which
viewer is capturing which egocentric video? To answer these questions, we need
to compare a set of egocentric videos to a set of viewers visible in a single top-
view video. To find a matching, each set is represented by a graph and the two
graphs are compared using a spectral graph matching technique [4]. In general,
this problem can be very challenging due to the nature of egocentric cameras.
Since the camera-holder is not visible in his own egocentric video leaving us with
no cues about his visual appearance.

In what follows we briefly mention some challenges concerning this problem
and sketch the layout of our approach.



Ego2Top: Matching Viewers in Egocentric and Top-View Videos 255

Fig. 2. The input to our framework is a set of egocentric videos (in this case 5 videos),
and one top-view video. The goal is defined as assigning the egocentric videos to the
people recording them. A graph is formed on the set of egocentric videos (each node
being one of the egocentric videos), and the other graph is formed on the top-view
video (each node being one of the targets present in the video). Using spectral graph
matching, a soft assignment is found between the two graphs, and using a soft-to-hard
assignment, each egocentric video is assigned to one of the viewers in the top-view
video. This assignment is our answer to the second question in 1.

In order to have an understanding of the behavior of each individual in the
top-view video, we use a multiple object tracking method [5] to extract the
viewer’s trajectory in the top-view video. Note that an egocentric video captures
a person’s field of view rather than his spatial location. Therefore, the content of
a viewer’s egocentric video, a 2D scene, corresponds to the content of the viewer’s
field of view in the top-view camera. For the sake of brevity, we refer to a viwer’s
top-view field of view as Top-FOV in what follows. Since trajectories computed
by multiple object tracking do not provide us with the orientation of the egocen-
tric cameras in the top-view video, we employ the assumption that for the most
part humans tend to look straight ahead and therefore shoot videos from the
visual content in front of them. Note that this is not a restrictive assumption as
most ego-centric cameras are body worn (Please see Fig. 4). Having an estimate
of a viewer’s orientation and Top-FOV, we then encode the changes in his Top-
FOV over time and use it as a descriptor. We show that this feature correlates
with the change in the global visual content (or Gist) of the scene observed in
his corresponding egocentric video (Fig. 3).

We also define pairwise features to capture the relationship between two ego-
centric videos, and also the relationship between two viewers in the top-view cam-
era. Intuitively, if an egocentric viewer observes a certain scene and another ego-
centric viewer comes across the same scene later, this could hint as a relationship
between the two cameras. If we match a top-view viewer to one of the two egocen-
tric videos, we are likely to be able to find the other viewer using the mentioned
relationship. As we experimentally show, this pairwise relationship significantly
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Fig. 3. Adapting our method for evaluating top-view videos. We compare the graph
formed on the set of egocentric videos to the ones built on each top-view video. The top-
view videos are then ranked based on the graph matching similarity. The performance
of this ranking gives us insight on our first question.

improves our assignment accuracy. This assignment will lead to defining a score
measuring the similarity between the two graphs. Our experiments demonstrate
that the graph matching score could be used for verifying if the top-view video is
in fact, capturing the egocentric viewers (See the diagram shown in Fig. 7a).

The rest of this work is as follows. In Sect. 2, we mention related works to
our study. In Sect. 3, we describe the details of our framework. Section 4 presents
our experimental results followed by discussions and conclusions in Sect. 5.

2 Related Work

Visual analysis of egocentric videos has recently became a hot topic in computer
vision [6,7], from recognizing daily activities [1,2] to object detection [8], video
summarization [9], and predicting gaze behavior [10–12]. In the following, we
review some previous work related to ours spanning Relating static and egocen-
tric, Social interactions among egocentric viewers, and Person identification and
localization.

Relating Static and Egocentric Cameras: Some studies have addressed
relationships between moving and static cameras. Interesting works reported in
[13,14] have studied the relationship between mobile and static cameras for the
purpose of improving object detection accuracy. [15] fuses information from ego-
centric and exocentric vision (other cameras in the environment) and laser depth
range data to improve depth perception in 3D reconstruction. [16] predicts gaze
behavior in social scenes using first-person and third-person cameras.

Social Interactions among Egocentric Viewers: To explore the relationship
among multiple egocentric viewers, [17] combines several egocentric videos to
achieve a more complete video with less quality degradation by estimating the
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importance of different scene regions and incorporating the consensus among
several egocentric videos. Fathi et al., [18] detect and recognize the type of social
interactions such as dialogue, monologue, and discussion by detecting human
faces and estimating their body and head orientations. [19] proposes a multi-task
clustering framework, which searches for coherent clusters of daily actions using
the notion that people tend to perform similar actions in certain environments
such as workplace or kitchen. [20] proposes a framework that discovers static
and movable objects used by a set of egocentric users.

Person Identification and Localization: Perhaps, the most similar computer
vision task to ours is person re-identification [21–23]. The objective here is to
find the person present in one static camera, in another overlapping or non-
overlapping static camera. However, the main cue in human re-identification is
visual appearance of humans, which is absent in egocentric videos. Tasks such as
human-identification and localization in egocentric cameras have been studied
in the past. [24] uses the head motion of an egocentric viewer as a biometric
signature for determine which videos have been captured by the same person.
[25] identifies egocentric observers in other egocentric videos, using their head
motion. Relating geo-spatial location to user shared visual content has also been
explored. [3] localizes the field of view of an egocentric camera by matching
it against a reference dataset of videos or images (such as Google street view),
and [26] refines the geo-location of images by matching them against user shared
images. Landmarks and map symbols are used in [27] to perform self localization
on the map. [28] use semantic cues for spatial localization, and [29] uses location
information to infer semantic information.

3 Framework

The block diagram in Fig. 2 illustrates different steps of our approach. First,
each view (ego-centric or top-down) is represented by a graph which defines
the relationship among the viewers present in the scene. These two graphs may
not have the same number of nodes as some the egocentric videos might not
be available, or some individuals present in the top-view video might not be
capturing videos. Each graph consists of a set of nodes, each of which represents
one viewer (egocentric or top-view), and the edges of the graph encode pairwise
relationships between pairs of viewers.

We represent each viewer in top-view by describing his expected Top-FOV,
and in egocentric view by the visual content of his video over time. This descrip-
tion is encoded in the nodes of the graphs. We also define pairwise relationships
between pairs of viewers, which is encoded as the edge features of the graph (i.e.,
how two viewers’ visual experience relate to each other).

Second, we use spectral graph matching to compute a score measuring the
similarity between the two graphs, alongside with an assignment from the nodes
of the egocentric graph to the nodes of the top-view graph.

Our experiments show that the graph matching score can be used as a
measure of similarity between the egocentric graph and the top-view graph.
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Therefore, it can be used as a measure for verifying if a set of egocentric videos
have been shot in the same environment captured by the top-view camera. In
other words, we can evaluate the capability of our method in terms of answering
our first question. In addition, the assignment obtained by the graph matching
suggests an answer to our second question. We organize this section by going
over the graph formation process for each of the views, and then describing the
details of the matching procedure.

3.1 Graph Representation

Each view (egocentric or top-view) is described using a single graph. The set of
egocentric videos is represented using a graph in which each node represents one
of the egocentric videos, and an edge captures the pairwise relationship between
the content of the two videos.

In the top-view graph, each node represents the visual experience of a viewer
being tracked (in the top-view camera), and an edge captures the pairwise
relationship between the two. By visual experience we mean what a viewer is
expected to observe during the course of his recording seen from the top view.

3.1.1 Modeling the Top-View Graph
In order to model the visual experience of a viewer in a top-view camera, we need
to have knowledge about his spatial location (trajectory) throughout the video.
We employ the multiple object tracking method presented in [5] and extract a
set of trajectories, each corresponding to one of the viewers in the scene. Similar
to [5], we use annotated bounding boxes, and provide their centers as an input
to the multiple object tracker. Our tracking results are nearly perfect due to
several reasons: the high quality of videos, high video frame rate, and lack of
challenges such as occlusion in the top-view videos.

Each node represents one of the individuals being tracked. Employing the
general assumption that people often tend to look straight ahead, we use a
person’s speed vector as the direction of his camera at time t (denoted as θt).
Further, assuming a fixed angle (θd), we expect the content of the person’s
egocentric video to be consistent with the content included in a 2D cone formed
by the two rays emanating from the viewer’s location and with angles θ−θd and
θ + θd. Figure 4 illustrates the expected Top-FOV for three different individuals
present in a frame. In our experiments, we set θd to 30 degrees. In theory, angle
θd can be estimated more accurately by knowing intrinsic camera parameters
such as focal length and sensor size of the corresponding egocentric camera.
However, since we do not know the corresponding egocentric camera, we set it
to a default value.

Top-FOVs are not directly comparable to viewers’ egocentric views. The area
in the Top-FOV in a top-view video mostly contains the ground floor which is
not what an ego-centric viewer usually observes in front of him. However, what
can be used to compare the two views is the relative change in the Top-FOV of
a viewer over time. This change should correlate with the change in the content
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(a) (b) (c)

Fig. 4. Expected field of view for three different viewers in the top-view video along-
side with their corresponding egocentric frames. The short dark blue line shows the
estimated orientation of the camera. The Top-FOV shown in (b) and (c) have a high
overlap, therefore we expect their egocentric videos to have relatively similar visual
content compared to the pairs (a,b) or (a,c) at this specific time. (Color figure online)

of the egocentric video. Intuitively, if a viewer is looking straight ahead while
walking on a straight line, his Top-FOV is not going to have drastic changes.
Therefore, we expect the viewer’s egocentric view to have a stable visual content.

Node Features: We extract two unary features for each node, one captures
the changes in the content covered by his FOV, and the other is the number of
visible people in the content of the Top-FOV.

To encode the relative change in the visual content of viewer i visible in the
top-view camera, we form the T × T matrix (T denotes the number of frames
in the top-view video) U IOU

i whose elements U IOU
i (fp, fq) indicate the IOU

(intersection over union) of the Top-FOV of person i in frames fp and fq. For
example, if the viewer’s Top-FOV in frame 10 has high overlap with his FOV in
frame 30 (thus U IOU

i (10, 30) has a high value), we expect to see a high visual
similarity between frames 10 and 30 in the egocentric video. Examples shown in
the middle column of Fig. 5(a).

Having the Top-FOV of viewer i estimated, we then count the number of
people within his Top-FOV at each time frame and store it in a 1 × T vector
Un

i . To count the number of people, we used annotated bounding boxes. Figure 4
illustrates three viewers who have one human in their Top-FOV. Examples shown
in the top row of Fig. 6.

Edge Features: Pairwise features are designed to capture the relationship
among two different individuals. In the top-view videos, similar to the unary
matrix U IOU

i , we can form a T × T matrix BIOU
ij to describe the relationship

between a pair of viewers (viewers/nodes i and j), in which BIOU
ij (fp, fq) is

defined as the intersection over union of the Top-FOVs of person i in frame fp

and person j in frame fq. Intuitively, if there is a high similarity between the
Top-FOVs of person i in frame 10 and person j in frame 30, we would expect
the 30th frame of viewer j’s egocentric video to be similar to the 10th frame of
viewer i’s egocentric video. Two examples of such features are illustrated in the
middle column of Fig. 5(b).
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(a) (b)

Fig. 5. (a) shows two different examples of the 2D features extracted from the nodes
of the graphs (values color-coded). Left column shows the 2D matrices extracted from
the pairwise similarities of the visual descriptors UGIST , middle shows the 2D matrices
computed by intersection over union of the FOV in the top-view camera UIOU , and
the rightmost column shows the result of the 2D cross correlation between the two.
(b) shows the same concept, but between two edges. Again, the leftmost figure shows
the pairwise similarity between GIST descriptors of one egocentric camera to another
BGIST . Middle, shows the pairwise intersection over union of the FOVs of the pair of
viewers BIOU , and the rightmost column illustrates their 2D cross correlation. The sim-
ilarities between the GIST and FOV matrices capture the affinity of two nodes/edges
in the two graphs.

3.1.2 Modeling the Egocentric View Graph
As in the top-view graph, we also construct a graph on the set of egocentric
videos. Each node of this graph represents one egocentric video. Edges between
the nodes capture the relationship between two egocentric videos.

Node Features: Similar to the top-view graph, each node is represented using
two features. First, we compute pairwise similarity between GIST features [30] of
all video frames (for one viewer) and store the pairwise similarities in the matrix
UGIST

Ei
, in which the element UGIST

Ei
(fp, fq) is the GIST similarity between frame

fp and fq of egocentric video i. Two examples of such features are illustrated in
the left column of Fig. 5(a). The GIST similarity is a function of the euclidean
distance of the GIST feature vectors.

UGIST
Ei

(f1, f2) = e
−γ|gEi

fp
−g

Ei
fq

|
. (1)

In which gEi

fp
and gEi

fq
are the GIST descriptors of frame fp and fq of egocentric

video i, and γ is a constant which we empirically set to 0.5.
The second feature is a time series counting the number of seen people in

each frame. In order to have an estimate of the number of people, we run a
pre-trained human detector using deformable part model [31] on each egocentric
frame. In order to make sure that our method is not including humans in far
distances (which are not likely to be present in top-view), we exclude bounding
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Fig. 6. Examples of the 1D features capturing the number of visible humans time-
series. Top row shows the number of visible people in each viewer’s Top-FOV over
time. Bottom row shows the summation of the detection scores at every frame in an
egocentric video.

boxes whose sizes are smaller than a certain threshold (determined considering
an average human height of 1.7 m and distance of the radius of the area being
covered in the top view video.). Each of the remaining bouding boxes, has a
detection score (rescaled into the interval [0 1]) which has the notion of the
probability of that bounding box containing a person. Scores of all detections
in a frame are added and used as a count of people in that frame. Therefore,
similar to the top-view feature, we can represent the node Ei of egocentric video
i with a 1 × TEi

vector Un
Ei

(Examples shown in the bottom row of Fig. 6.).

Edge Features: To capture the pairwise relationship between egocentric camera
i (containing TEi

frames) and egocentric camera j (containing TEj
frames), we

extract GIST features from all of the frames of both videos and form a TEi
×TEj

matrix BGIST
ij in which BGIST

ij (fp, fq) represents the GIST similarity between
frame fp of video i and frame fq of video j (Examples shown in the left column
of Fig. 5(b).).

BGIST
ij (fp, fq) = e

−γ|gEi
fp

−g
Ej
fq

|
. (2)

3.2 Graph Matching

The goal is to find a binary assignment matrix xNe×Nt (Ne being the number
of egocentric videos and N t being the number of people in the top-view video).
x(i, j) being 1 means egocentric video i is matched to viewer j in top-view.
To capture the similarities between the elements of the two graphs, we define
the affinity matrix ANeNt×NeNt . aik,jl is the affinity of edge ij in the egocen-
tric graph with edge kl in the top-view graph. Reshaping matrix x as a vector
xNeNt×1 ∈ {0, 1}NeNt

, the assignment problem is defined as the following:

argmax
x

xT Ax. (3)

We compute aik,jl based on the similarity between the feature descriptor of edge
ij in the egocentric graph BGIST

ij and the feature descriptor for edge kl in the
top-view graph BIOU

kl .
As described in the previous section, each of these features is a 2D matrix.

BGIST
ij is a TEi

× TEj
matrix, TEi

and TEj
being the number of frames in

egocentric videos i and j, respectively. On the other hand, BIOU
kl is a Tt × Tt
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matrix, Tt being the number of frames in the top-view video. BGIST
ij and BIOU

kl

are not directly comparable due to two reasons. First, the two matrices are not
of the same size (the videos do not necessarily have the same length). Second,
the absolute time in the videos do not correspond to each other (videos are not
time-synchronized). For example, the relationship between viewers i and j in the
100th frame of the top-view video does not correspond to frame number 100 of
the egocentric videos. Instead, we expect to see a correlation between the GIST
similarity of frame 100+di of egocentric video i and frame 100+dj of egocentric
video j, and the intersection over union of in Top-FOVs of viewers k and l in
frame 100. di and dj are the time delays of egocentric videos i and j with respect
to the top-view video.

To able to handle this misalignment, we define the affinity between the two 2D
matrices as the maximum value of their 2D cross correlation. Hence, if egocentric
videos i and j have di and dj delays with respect to the top-view video, the
cross correlation between BGIST

ij and BIOU
kl should be maximum when BGIST

ij

is shifted di units in the first, and dj units in the second dimension.

Aikjl = max(BGIST
ij ∗ BIOU

kl ). (4)

where ∗ denotes cross correlation. For the elements of A for which i = j and
k = l, the affinity captures the compatibility of node i in the egocentric graph,
to node k in the top-view graph. The compatibility between the two nodes is
computed using 2D cross correlation between U IOU

k and UGIST
Ei

and 1D cross
correlation between Un

k and Un
Ei

. The overall compatibility of the two nodes is
a weighted linear combination of the two:

Aikik = αmax(UGIST
Ei

∗ U IOU
k ) + (1 − α)max(Un

Ei
∗ Un

k ), (5)

where α is a constant between 0 and 1 specifying the contribution of each term.
In our experiments, we set α to 0.9. Figure 5 illustrates the features extracted
from some of the nodes and edges in the two graphs.

Soft Assignment. We employ the spectral graph matching method introduced
in [4] to compute a soft assignment between the set of egocentric viewers and
top-view viewers. In [4], assuming that the affinity matrix is an empirical estima-
tion of the pairwise assignment probability, and the assignment probabilities are
statistically independent, A is represented using it’s rank one estimation which
is computed by argmin

p
|A − ppT |. In fact, the rank one estimation of A is no

different than it’s leading eigenvector. Therefore, p can be computed either using
eigen decompositon, or estimated iteratively using power iteration. Considering
vector p as the assignment probablities, we can reshape pNeNt×1 into a Ne ×N t

soft assignment matrix P , for which after row normalization P (i, j) represents
the probability of matching egocentric viewer i to viewer j in the top-view video.

Hard Assignment. Any soft to hard assignment method can be used to convert
the soft assignment result (generated by spectral matching) to the hard binary
assignment between the nodes of the graphs. We used the well known Munkres
(also known as Hungarian) algorithm to obtain the final binary assignment.
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4 Experimental Results

In this section, we will mention details of our experimental setup and collected
dataset, the measures we used to evaluate the performance of our method, and
the performance of our proposed method alongside with some baselines.

4.1 Dataset

We collected a dataset containing 50 test cases of videos shot in different indoor
and outdoor conditions. Each test case, contains one top-view video and sev-
eral egocentric videos captured by the people visible in the top-view camera.
Depending on the subset of egocentric cameras that we include, we can gener-
ate up to 2,862 instances of our assignment problem (will be explained in more
detail in Sect. 4.2.4). Overall, our dataset contains more than 225,000 frames.
Number of people visible in the top-view cameras varies from 3 to 10, number
of egocentric cameras varies from 1 to 6, and the ratio of number of available
egocentric cameras to the number of visible people in the top-view camera varies
from 0.16 to 1. Lengths of the videos vary from 320 frames (10.6 s) up to 3132
frames (110 s).

4.2 Evaluation

We evaluate our method in terms of answering the two questions we asked. First,
given a top-view video and a set of egocentric videos, can we verify if the top-
view video is capturing the egocentric viewers? We analyze the capability of our
method in answering this question in Sect. 4.2.1.

Second, knowing that a top-view video contains the viewers recording a set
of egocentric videos, can we determine which viewer has recorded which video?
We answer this question in Sects. 4.2.2 and 4.2.3.

4.2.1 Ranking Top-View Videos
We design an experiment to evaluate if our graph matching score is a good mea-
sure for the similarity between the set of egocentric videos and a top-view video.
Having a set of egocentric videos from the same test case (recorded in the same
environment), and 50 different top-view videos (from different test cases), we
compare the similarity of each of the top-view graphs to the egocentric graph.
After computing the hard assignment for each top view video(resulting in the
assignment vector x), the score xT Ax is associated to that top-view video. This
score is effectively the summation of all the similarities between the correspond-
ing nodes and edges of the two graphs. Using this score rank all the top-view
videos. The ranking accuracy is measured by measuring the rank of the ground
truth top-view video, and computing the cumulative matching curves shown
in Fig. 7(a). The blue curve shows the ranking accuracy when we compute the
scores only based on the unary features. The red curve shows the ranking accu-
racy when we consider both the unary and pairwise features for performing
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graph matching. The dashed black line shows the accuracy of randomly rank-
ing the top-view videos. It can be observed that both the blue and red curves
outperform the random ranking. This shows that our graph matching score is
a meaningful measure for estimating the similarity between the two graphs. In
addition, the red curve, outperforming the blue curve shows the effectiveness of
our pairwise features. In general, this experiment answers the first question. We
can in fact use the graph matching score as a cue for narrowing down the search
space among the top-view videos, for finding the one corresponding to our set
of the egocentric cameras.

4.2.2 Viewer Ranking Accuracy
We evaluate our soft assignment results, in terms of ranking capability. In other
words, we can look at our soft assignment as a measure to sort the viewers
in the top-view video based on their assignment probability to each egocentric
video. Computing the ranks of the correct matches, we can plot the cumulative
matching curves to illustrate their performance.

We compare our method with three baselines in Fig. 7(b). First, random
ranking (dashed black line), in which for each egocentric video we randomly rank
the viewers present in the top-view video. Second, sorting the top-view viewers
based on the similarities of their 1D unary features to the 1D unary features of
each egocentric camera (i.e., number of visible humans illustrated by the blue
curve). Third, sorting the top-view viewers based on their 2D unary feature
(GIST vs. FOV, shown by the green curve). Note that here (the blue and green
curves), we are ignoring the pairwise relationships (edges) in the graphs. The
consistent improvement of our method (red curve) over the baselines, justifies
the effectiveness of our representation, and shows the contribution of each stage.

4.2.3 Assignment Accuracy
In order to answer the second question, we need to evaluate the accuracy of
our method in terms of node assignment accuracy. Having a set of egocentric
videos and a top-view video containing the egocentric viewers, we evaluate the
percentage of the egocentric videos which were correctly matched to their corre-
sponding viewer. We evaluate the hard-assignment accuracy of our method and
compare it with three baselines in Fig. 7(c). First, random assignment (Rnd),
in which we randomly assign each egocentric video to one of the visible view-
ers in the top-view video. Second, Hungarian bipartite matching only on the
1D unary features denoted as H. Third, Hungarian bipartite matching only on
the 2D unary feature (GIST vs. FOV, denoted as G-F), ignoring the pairwise
relationships (edges) in the graphs.

The consistent improvement of our method using both unary and pairwise
features in graph matching (denoted as GM) over the baselines shows the signif-
icant contribution of pairwise features in the assignment accuracy. As a result,
the promising accuracy acquired by graph matching answers the second ques-
tion. Knowing a top-view camera is capturing a set of egocentric viewers, we can
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(a) (b) (c)

Fig. 7. (a) shows the cumulative matching curve for ranking top-view videos. The
blue curve shows the accuracy achieved only using the node similarities. Red is the
accuracy considering both node and edge similarities in the graph matching. (b) shows
the cumulative matching curve for ranking the viewers in the top-view video. The red,
green and blue curves belong to ranking based on spectral graph matching scores,
cross correlation between only the 2D, and only the 1D unary scores, respectively. The
dashed black line shows random ranking accuracy (c) shows the assignment accuracy
based on random assignment, using the number of humans, using unary features, and
using spectral graph matching. (Color figure online)

use visual cues in the egocentric videos and the top-view video, to decide which
viewer is capturing which egocentric video.

4.2.4 Effect of Number of Egocentric Cameras
In Sects. 4.2.2 and 4.2.3, we evaluated the performance of our method given all
the available egocentric videos present in each set as the input to our method.
In this experiment, we compare the accuracy of our assignment and ranking
framework as a function of the completeness ratio (nEgo

nTop
) of our egocentric set.

Each of our sets contain 3 < N t < 11 viewers in the top-view camera, and
2 < Ne < 8 egocentric videos. We evaluated the accuracy of our method and
baselines when using different subsets of the egocentric videos. A total of 2Ne −1
non-empty subsets of egocentric videos is possible depending on which egocentric
video out of Ne are included (all possible non-empty subsets). We evaluate our
method on each subset separately.

Figure 8 illustrates the assignment and ranking accuracies versus the ratio
of the available egocentric videos to the number of visible people in the top-
view camera. It shows that as the completeness ratio increases, the assignment
accuracy drastically improves. Intuitively, having more egocentric cameras gives
more information about the structure of the graph (by providing more pairwise
terms) which leads to improvement in the spectral graph matching and assign-
ment accuracy.
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(a) (b) (c) (d)

Fig. 8. Effect of the relative number of egocentric cameras referred to as completeness
ratio (

nEgo

nTop
). (a) shows the ranking accuracy vs

nEgo

nTop
, only using the unary features.

(b) shows the same evaluation using the graph matching output. (c) shows the accuracy
of the hard assignment computed based on Hungarian bipartite matching on top of the
unary features, and (d) shows the hard-assignment computed based on the spectral
graph matching.

5 Conclusion and Discussion

In this work, we studied the problems of matching and assignment between a
set of egocentric cameras and a top view video. Our experiments suggest that
capturing the pattern of change in the content of the egocentric videos, along
with capturing the relationships among them can help to identify the viewers
in top-view. To do so, we utilized a spectral graph matching technique. We
showed that the graph matching score, is a meaningful criteria for narrowing
down the search space in a set of top-view videos. Further, the assignment found
by our framework is capable of associating egocentric videos to the viewers in
the top-view camera. We conclude that meaningful features can be extracted
from single, and pairs of egocentric camera(s) and incorporating the temporal
information of the video(s).
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