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Abstract. The problem of learning binary hashing seeks the identifica-
tion of a binary mapping for a set of n examples such that the correspond-
ing Hamming distances preserve high fidelity with a given n×n matrix of
distances (or affinities). This formulation has numerous applications in
efficient search and retrieval of images (and other high dimensional data)
on devices with storage/processing constraints. As a result, the problem
has received much attention recently in vision and machine learning and
a number of interesting solutions have been proposed. A common feature
of most existing solutions is that they adopt continuous iterative opti-
mization schemes which is then followed by a post-hoc rounding process
to recover a feasible discrete solution. In this paper, we present a fully
combinatorial network-flow based formulation for a relaxed version of
this problem. The main maximum flow/minimum cut modules which
drive our algorithm can be solved efficiently and can directly learn the
binary codes. Despite its simplicity, we show that on most widely used
benchmarks, our proposal yields competitive performance relative to a
suite of nine different state of the art algorithms.

1 Introduction

The need to perform quick indexing and retrieval on large collections of images
and videos, both in our personal collections and on the web, has led to a resur-
gence of interest in efficient methods for hashing.

While the literature on this topic is quite mature, the need to accomplish
retrieval tasks on novel mobile architectures has led to numerous interesting vari-
ations of the problem. For example, small form factor devices with limited stor-
age capacity as well as the associated power consumption constraints typically
involve unique economy/accuracy trade-offs for the algorithm. Separately, when
the data correspond to images, notice that it may not be sensible to hash the native
image representation expressed as a R

D vector. Indeed, much of the image may
include background clutter as well as other content not directly pertinent to the
semantic information of the image. This leads to interesting variations of hashing
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where each to-be-hashed example may actually correspond to multiple patches (or
salient objects) contained within an image.

In vision applications of hashing, it is often the case that rather than represent
the image in terms of its components as described above, it is more convenient
to compute similarities between pairs of images in the dataset [1,2]. In practice,
this is accomplished by running an object detector on each image and assessing
whether each pair of images contain similar content. For instance, we may assume
that images where detectors find similar objects are likely to be similar. So, for
a given corpus of n images, we obtain a n×n similarity matrix via standard pre-
processing. The hashing problem here requires finding a lower dimensional (say,
d) mapping for each example in the corpus such that distances (or similarities) in
the embedded space are low-distortion, relative to the original similarities. The
“binary” version of this problem instead seeks an embedding to a d-dimensional
{0, 1} space — this formulation is called Binary hashing. There is much recent
interest in this problem due to two key reasons. First, binary hashing makes the
downstream retrieval task extremely easy. For instance, the Hamming distance
between a query and an item in the database can now be computed simply via
logical operations (e.g., XOR) which leads to efficiency advantages. Second, the
storage requirements are modest: even large image datasets such as ImageNet
can easily be stored on commodity handheld devices without compression.

Deriving a binary embedding which maintains good fidelity with a given sim-
ilarity matrix is commonly known in the literature as learning binary hashing.
There is a growing body of work in computer vision and machine learning on
various nice approaches to the problem. Note that the core problem is NP-hard
(both non-convex and discrete), so most proposed methods involve iterative con-
tinous optimization schemes or make use of various other spectral relaxations
that need solutions to large eigen-value problems [3], coordinate descent [4], Pro-
crustean quantization [5] and concave-convex optimization [6]. These techniques
often produce a relaxed solution, which is then ‘rounded’ based on its sign.
These are effective approaches and work well in many cases though approxima-
tion ratios may be difficult to obtain. Our goal is to investigate, via an interesting
reformulation, the feasibility of (arguably) simpler discrete energy minimization
algorithms for a relaxed version of this problem and to assess if it can still offer
competitive performance. In particular, we seek to derive fully combinatorial
algorithms for learning binary hashing. Recall that while combinatorial meth-
ods have various benefits and dominate the landscape of image segmentation
in vision, one attractive feature is that the primitive operations required (e.g.,
addition, counting) are simple. This yields substantial efficiency benefits for our
main training module and is appropriate in situations where support for more
intensive low-level operations is unavailable or otherwise undesirable. We present
here a network-flow based formulation that is easy to implement and yields a
provably partially-optimal solution for each bit of the hash code. To our knowl-
edge, no combinatorial approaches currently exist for learning binary hashing in
an unsupervised setup using network flow. Further, our approach extends to any
arbitrary ‖.‖p

p norm, though in this paper, for presentation purposes, we restrict
our treatment to �1-norms and sum of squares distances.



368 L. Mukherjee et al.

Related Work. A well known algorithm for hashing is Locality-Sensitive Hash-
ing (LSH) [7]. LSH creates a hashing scheme where similar items fall in the same
bucket with high probability. Such embeddings are obtained via projections on
randomly generated hyperplanes, where the query time for a (1 + ε) approxi-
mate nearest neighbor can be bounded by O(n

1
1+ε ). An advantage of LSH is

that the random projections provably preserve distances in the limit as the
number of hash bits increases. But it has been observed that the number of
hash bits required may need to be large to faithfully maintain distances. More
recent work has focused on better exploiting the structure of the data in spe-
cific domains by generating more effective/tailored hash functions. To this [8]
end, within vision and machine learning, a number of methods [6] have been
proposed including: Semantic Hashing [9,10], Spectral Hashing (SH) [3], Kernel-
ized Spectral Hashing (KLSH) [11], Multi-dimension Spectral Hashing (MDSH)
[12], Iterative Quantization (ITQ) [5], BRE [4], Anchor Graph Hashing (AGH)
[8,13], NMF based Hashing [14], Self-taught Hashing (STH) [15], and Fast Hash
[16]. Other proposals include parameter sensitive hashing [17] and asymmetric
hash functions [18]. We briefly review some existing discrete formulations of the
hashing problem. Most of these methods focus on the supervised version of the
problem. A graph partitioning approach has been used in the supervised case by
[19]. For the same problem, [20] employs an approach that solves the NP-hard
hashing problem as regularized sub-problems that admits an analytical solution
via cyclic coordinate descent. In terms of the unsupervised problem, to the best
of our knowledge, [8] is the only approach that uses a discrete optimization based
method for graph hashing using the anchor graph method. It proposes a bilevel
maximization, one of which can be solved in closed form. It should be noted that
the objective and subsequent optimization techniques in [8] are not similar to
the network-flow approach proposed in this paper. As we will describe shortly,
our proposal is also among a few hashing based approaches such as [21], that
uses a simple two stage process for evaluating unseen data: first, we generate
classifiers using the training code as labels and later these classifiers are used
to predict the hashing code for test examples. Our experiments show that this
scheme, though not widely utilized currently, has merit in vision applications.

2 Setting Up the Optimization Model

In this section, we will setup a simple optimization model that expresses the key
properties of a desired solution to the learning binary hashing problem. Then,
we will describe the details of our proposed algorithm and its analysis.

Notations. We use upper case letters such as Q to denote matrices and bold
lower case characters such as q for vectors. When referring to a set of vectors,
the ith vector will be qi; the jth entry of a vector q will be denoted as qi.

Let Y ∈ R
n×D be a matrix comprised of n examples in D dimensions as its

rows. Let A ∈ R
n×n be the matrix of pairwise similarities of examples in Y .

Our goal is to find an embedding of Y into a lower dimensional binary space
X ∈ {0, 1}n×d, where D � d. Clearly, the above embedding should preserve
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the relative distances between the n examples. Since X is binary, we use the
Hamming distance between the examples in X. Let H ∈ Z

n×n be the matrix
of the corresponding pairwise Hamming distances, i.e., each entry Hij computes
the Hamming distance between examples i and j in X. The objective is given as

arg min
X

df (A − H) s.t. H = Γ (X), (1)

where df (·) is an appropriate loss function, e.g., capturing the distance between
matrices, and the constraint involving Γ (·) asks that H must capture the Ham-
ming distances between the examples in the (embedded) binary space.

Let us now define Γ by writing H as a function of X. This can be expressed
as Hij =

∑
(xi− ⊕ xj−) where xi− and xj− are rows of X (i.e., the binary

embedding of examples i and j) and ⊕ denotes the bitwise XOR operation of
two binary vectors. But substituting this format directly into (1) is not very
useful. Instead, we can observe that the corresponding XOR operation can be
written in quadratic form as

H = X(1 − X)T + (1 − X)XT , (2)

where 1 is a matrix of 1s of appropriate size. This formulation, when substituted
in (1), unfortunately, does not lead to tractable forms for most choices of df (.).
But interestingly, as we will see shortly, if the loss function is the Sum of Square
Distances (SSD) and/or the �1 distance, then we obtain models with distinct
advantages. We focus on these two examples for the loss since they are widely
used but our solution extends to arbitrary ‖.‖p

p distances.

3 Minimizing the Sum of Squares Distances

In this section, we first describe how problem (1) can be reformulated as a
network flow when the loss function is a sum of squares distance (SSD). After
presenting the model, we will give an efficient sequential update strategy.

Let 1n×d denote a matrix of 1s. Let us rewrite (1) to derive an identity for H,

H =X(1n×d − X)T + (1n×d − X)XT (3)

= − (1n×d − X)(1n×d − X)T − XXT + d1n×n = −X̄X̄T − XXT + d1n×n

Let X̄ denote the term 1n×d − X. Immediately, we have that

A − H =X̄X̄T + XXT − (d1n×n − A) = X̄X̄T + XXT − Ā, (4)

where Ā = d1n×n − A. Now, we rewrite problem (1) using the SSD measure,

min
X

‖Ā − X̄X̄T − XXT ‖2
2 = min

X
‖Ā −

d∑

i=1

(xixT
i + x̄ix̄T

i )‖2
2, (5)

where xi, x̄i are the i-th columns of the binary matrices X and X̄ respectively.
Observe that by definition, we have

xi + x̄i = 1n×1, xT
i x̄i = 0, ∀i = 1, · · · , d. (6)
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3.1 Bit-by-Bit Network Flow

Solving Problem (5) for all d columns of X concurrently turns out to be difficult.
So, we adopt a sequential strategy here — we temporarily fix d − 1 columns of
the matrix X and update a single column xiter at a time. To reduce notational
clutter, instead of xiter, we will drop the subscript and x will denote the column
currently being updated. All other columns will be referred to as xi|i�=iter.

To optimize the entries relevant to a single bit iter, we start with (5) and
take out terms for all ‘frozen’ (for this update) entries i �= iter.

min
X

|| Ā −
d∑

i=1|i�=iter

(xixT
i + x̄ix̄T

i )

︸ ︷︷ ︸
G

−(x̂x̂T + ˆ̄xˆ̄xT )||22.

Letting G = Ā−∑d
i=1,i �=iter(x̂ix̂T

i + ˆ̄xi ˆ̄xT
i ) is convenient because we can now

consider G to be the weight matrix associated with a network (or an undirected
graph) of n nodes, i.e., N = {v1, · · · , vn} where every entry Gij denotes the
weight of the edge from vi to vj . Here, we also have that the to-be-updated
x ∈ {0, 1}n and x̄ = 1n×1 − x. With these definitions, we can formally write
down the following subproblem which needs to be solved in any update step,

min ‖G − (xxT + x̄x̄T )‖2
2, (7)

A Potential Solution via Minimum Cuts. For given binary x and x̄, let us
define two subsets of nodes as follows.

N1 = {vi : xi = 1}, N̄1 = N − N1 = {vi : x̄i = 1}.

Denote the entry-wise square of the matrix, G as G2
ij . We call Ĝ the difference

matrix whose elements are defined as Ĝij = G2
ij − (G − 1n×n)2ij . By inspection,

G(x) =‖G − (xxT + x̄x̄T )‖2
2 (8)

=
∑

i,j

(G − 1n×n)2ij + 2
∑

i∈N1,j∈N̄1

Ĝij . (9)

Properties of (9). The identity in (9) has a particularly interesting form. First,
note that the first term is constant. Now, if we think of a graph whose edge
weights are given by the matrix Ĝ, then by inspection, we see that the second
term precisely minimizes the cut edges of that graph – the resultant partitions
induced by the cut are N1 and N̄1. This means that our objective has reduced to
the classic formulation of network flow on graphs. Therefore, solving problem (7)
is equivalent to finding the minimum cut in a network with a weight matrix
Ĝ (see footnote). Since the minimum cut problem can be solved effectively in
polynomial time [22], we immediately have the following result.
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Theorem 1. Problem (7) is poly-time solvable if edge weights are non-negative1.

4 Formulating the �1 Distance Setting

In this section, we will derive an analogous solution scheme when the loss is
�1 distance, natural in various applications. Most steps here will be identical
to the SSD setup. However, we will need some additional constraints to derive
meaningful solutions for the motivating application, which will require special
treatment (to be optimizable combinatorially). Using �1 loss, analogous to (5),

min
X

‖Ā − X̄X̄T − XXT ‖1 = min
X

‖Ā −
d∑

i=1

(xixT
i + x̄ix̄T

i )‖1, (10)

where the constraints in (6) hold, as in the SSD case. As before, to solve prob-
lem (10) sequentially, we fix d − 1 columns of the matrix X and update a single
column x to reduce the objective. Analogous to (7) earlier, this leads to,

min
X

‖G − (xxT + x̄x̄T )‖1, (11)

where G is again the weight matrix associated with a network (or an undirected
graph) of n nodes (N = {v1, · · · , vn}), and every entry Gij denotes the weight
of the edge from vi to vj . Further, x ∈ {0, 1}n, x̄ = 1n×1 − x. We next briefly
discuss a reformulation as a network flow.

For binary x and x̄, we define two subsets of nodes as

N1 = {vi : xi = 1}, N1 = N − N1 = {vi : x̄i = 1}.

Define G̃ = |G| − |G − 1n×n| where |M | denotes the entry-wise absolute value of
the matrix. We can easily see that

G(x) = ‖G − (xxT + x̄x̄T )‖1 =
∑

i,j

|G − 1n×n|ij + 2
∑

i∈N1,j∈N1

G̃ij . (12)

Properties of (12). The properties are analogous to those of (9). Therefore, solv-
ing (11) is equivalent to finding the network flow with a weight matrix G̃. All
advantages (and limitations) of the SSD setting extend to the �1 case as well.

5 Constraints for Balanced Partitions

A network flow formulation for the above model has significant computational
benefits. Unfortunately, a disadvantage of the formulation is that it may lead to
1 This requires G ≥ 1

2
entry- wise which can be ensured by a scaling of the input matrix

A. However, this scaling is not utilized, since we eventually derive an extended model
that generalizes better and needs a QPBO-type solver due to the issues highlighted
later in Sect. 5. That formulation is not a min-cut and can handle negative weights.
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disproportionate cuts – that is, one partition is small (with only a few nodes),
whereas the other partition is large. When the model returns such solutions (for
one or more bits), expectedly, it will adversely affect the quality of the resultant
hashing. This issue is not specific to our proposal; in minimum cuts based graph
partitioning schemes, this behavior has been reported by [23] and others: the
so-called “shrinking” bias, i.e., favoring cutting small sets of isolated nodes in
the graph. On the other hand, as observed in [3] and other works, a desired
property of hashing functions is that ideally each bit has a 50% chance of being
one or zero. This means that, in expectation, our model should return almost
size balanced partitions. In other words, we need to regularize our formulation
to prefer cuts that are almost size balanced. This is known as the Balanced Cut
problem [24]. When formulated via hard constraints, the goal is to ensure that
the size of each partition ≥ βn, where β ≤ .5 is a constant and n is a number
of nodes in the graph. This problem is NP-hard. While various relaxations exist
[25], many are expensive to optimize and difficult to incorporate within our
network flow formulation. Our formulation does not have a specific need for a
hard size constraint; instead, we ask that the disbalance in the two partition
sizes must be penalized as a term in the objective. This leads to a Quadratic
Pseudoboolean function (QPB), which can still be solved using network flow.

5.1 Size Regularized Cuts

Let x ∈ {0, 1}n be the solution from a bit-level mincut problem. Since there are
only two partitions, i.e., xi = 0 or xi = 1, size balance requires that the values
of

∑n
i=1 xi and

∑n
i=1(1 − xi) be close. When normalized, this implies

1
n

n∑

i=1

xi ≈ 1
n

n∑

i=1

(1 − xi) ≈ 1
2
. (13)

Let p =
∑n

i=1 xi and q =
∑n

i=1(1 − xi) where we have p+q = n, i.e., each term p

(and q) counts the number of nodes in each partition. We can verify that pq ≤ n2

4
and this inequality becomes tight only if p = q. Therefore, an optimal balance is
achieved when pq is maximized or when the value of p2 + q2 is minimized. This
observation yields a reformulated balance regularization term. We see

p2 = x1n×nxT , q2 = (1 − x)1n×n(1 − x)T . (14)

So, the size balance regularization can be achieved via minimizing,

R(x) = x1n×nxT + (1 − x)1n×n(1 − x)T

Alternatively, via rearranging the above formulation, we can also minimize,

R(x) =
1
n2

n∑

i=1

n∑

j=1

xixj +
1
n2

n∑

i=1

n∑

j=1

(1 − xi)(1 − xj)

=
2
n2

n∑

i=1

n∑

j=1

xixj − 2
n

∑

i=1

xi + const (15)
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5.2 Reparameterization and Graph Construction

Putting together the above expression with the main network flow model, we
will solve following model for each bit,

min
x

E(x) = G(x) + αR(x) (16)

where α is the user defined influence of the regularizer.

Properties of (16). The model in (16) is the so-called Quadratic Pseudoboolean
form [26–28], which consists of quadratic and linear terms. Functions of this form
can be solved as a network flow model on a specially constructed graph. We will
shortly discuss the specifics of graph construction for this task. We will represent
each variable xi as a pair of literals, yi and ȳi where ȳi will represent 1−xi. This
pair of literals will correspond to a pair of nodes in a to-be-constructed graph G.
Edges will be added to G based on various terms in the corresponding QPB, to be
discussed shortly. The partition computed on G will determine the assignments
of variables xi to 1 (or 0). Depending on how the nodes in G for a pair of literals
yi and ȳi are partitioned, we will either get “persistent” integral 0/1 solutions
for xi (provably consistent with the optimal) or have 1

2 (half integral) values
assigned to xi which will need additional rounding to obtain a {0, 1} solution.
This is the reason QPB solution are considered partially optimal solutions —
i.e., entries in the solution which are integral are known to be optimal.

Reparameterization. Before describing the construction of G, we will repara-
meterize the coefficients in our objective as a vector Φ. More specifically, we will
rewrite the energy by collecting the unary and pairwise costs in (16) as the coef-
ficients of the linear and quadratic variables, denoted by Φi and Φij respectively.
The unary cost is set as Φi = − 2α

n . Other unary functions can also be included
here for stronger guidance. Each pairwise cost can be attributed to one of two
possible sources. First, a pair of nodes (xi and xj) which if assigned to different
partitions in a minimum cut will incur a cost based on the relevant entry in Ĝ
or G̃ – corresponds to G(x) in (16). Second, a pair of nodes where both xi and
xj is equal to 1 will incur a cost 2α

n2 – this corresponds to R(x) in (16).
Therefore, the definition of pairwise costs include the following two scenarios:

Φij =
{

Ĝij or G̃ij if xi �= xj
2α
n2 if xi = xj = 1

(17)

Graph Construction. With the reparameterization given as Φ = [Φj Φij ]T

done, we can now mechanically follow the recipe in [26,29] to construct a graph
G = {VG , EG} (briefly summarized below). For each variable xi, we introduce two
nodes, ρi and ρ̄i in VG (corresponding to literals yi and ȳi). Hence, the size of
the graph is |VG | = 2n. We also have two special nodes s and t which denote the
source and sink resp. We connect each node in VG to the source or the sink based
on the unary costs, assuming that the source (and sink) partitions correspond
to 1 (and 0). The source is connected to the node ρi with weight, − 1α

n whereas
ρ̄i is connected to the sink with the same weight.
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Table 1. Illustration of edge
weights introduced in the graph G
Type of edges in EG Weight of edge

(ρi → ρj), (ρ̄j → ρ̄i)
1
2
̂Gij or 1

2
˜Gij

(ρj → ρi), (ρ̄i → ρ̄j)
1
2
̂Gij or 1

2
˜Gij

(ρ̄j → ρi), (ρ̄i → ρj)
2α
n2

Edges between node pairs in VG (except
source and sink) give pairwise terms of the
energy. These edge weights, also given in
Table 1, give all possible relationships of pair-
wise nodes required.

A maximum flow/minimum cut proce-
dure on this graph provides a solution to our
problem. After the cut is obtained, each node is connected either to the source
set or to the sink set. We can obtain a final solution (i.e., 0 or 1 assignment) as,

xj =

⎧
⎨

⎩

0 if vj ∈ s, v̄j ∈ t
1 if vj ∈ t, v̄j ∈ s
1
2 otherwise

(18)

The 1
2 values are then rounded to {0, 1}.

5.3 Parameter Selection

We now discuss how to choose a suitable α to ensure that the solution to Prob-
lem (16) or its associated minimum cut problem is well-balanced. Recall that for
every fixed α, Problem (16) is polynomial time solvable. Given an α, let x∗(α)
denote the optimal solution of Problem (16), and let φ(α) = R(x∗(α)) be the
function value of R(x) at the optimal solution. We have

Theorem 2. The function φ(α) is decreasing in the sense

(α1 − α2)(φ(α1) − φ(α2)) ≤ 0, ∀α1 �= α2.

Proof. From optimality conditions of Problem (16) we have

G(x∗(α1)) + α1R(x∗(α1)) ≤ G(x∗(α2)) + α1R(x∗(α2));
G(x∗(α2)) + α2R(x∗(α2)) ≤ G(x∗(α1)) + α2R(x∗(α1)).

Adding the above two inequalities together, we obtain

α1R(x∗(α1)) + α2R(x∗(α2)) ≤ α1R(x∗(α2)) + α2R(x∗(α1));

which implies

(α1 − α2)(R(x∗(α1)) − R(x∗(α2))) = (α1 − α2)(φ(α1) − φ(α2)) ≤ 0.

This completes the proof.
The above theorem is interesting in that it suggests that a higher value of α

can only improve the balance criteria R(x). For sufficiently large penalty para-
meter α > 0, the second term αR(x) in the objective dominates G(x). Therefore,
we can expect that for sufficiently large α, the optimal solution x∗(α) of (16) will
be very close to the optimal solution (denoted by x∗) of the following problem
minR(x) which has a perfect balance. However, for computational purposes,
we do not continue optimizing the parameter value α, but are only interested in
finding a suitable parameter α such that the solution of (16) meets a pre-specified
balance requirement N . This leads us to the simple algorithm in Algorithm 1.
The overall algorithm is given in Algorithm 2.
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Algorithm 1. Algorithm for N Balanced Min-Cut
1: Input: Graph G, and balance threshold N ;
2: Set k = 0 and choose a large enough parameter αk > 0;
3: Solve problem (16) with α = αk and obtain optimal solution x(αk);
4: If R(x(αk)) ≤ N , stop, Output x(αk) as final solution.

Else update k = k + 1, αk = 2αk−1, and go to Step 3.

Algorithm 2. Mincut Hashing
1: Input: Similarity matrix A, number of bits d, α
2: Initialize X
3: for each node i in

[
1, d
]
do

4: Set up Ā, G and Ĝ (or G̃) according to Sec. 3 or 4.
5: G = Ĝ (or G = G̃)
6: x̂ = argminxG(x) + αR(x) solved as a QPBO (using Alg. 1)
7: X(:, i) = x̂
8: end for

5.4 Out of Sample Extensions

When evaluating the hashing scheme on unseen data, we generate d linear classi-
fiers, using the d bits of training code as labels; these classifiers are then used to
predict the hash code for the test example. In a departure from existing methods
(except [13]), where the separating hyperplanes are learned within the process of
hashing itself, our method solves for the code first and then generates the hyper-
planes, which are used to determine the codes for unseen test points. Hyperplanes
generated in this manner are based on the maximum margin principle, which
offers advantages when generating the hash bits for unseen data.

5.5 Time Complexity

The main step in each iteration is to solve the QPBO on a graph with O(n)
nodes. This is repeated d times, once for each bit. If the QPBO is solved using
a standard algorithm for min-cut/max-flow, the running time is O(n|E|), where
E is the number of edges in the graph. However, we use an implementation of
QPBO by [29], which was shown to about 700 times faster than other imple-
mentations of QPBO [26], even though its worst case time complexity is inferior
(O(n2|E||C|)), where |C| is the largest absolute edge capacity in the network.
Such implementations of QPBO are routinely used to solve higher order MRF
formulations of image segmentation, where the number of nodes in the graphs
(number of pixels) are 105 or more.

6 Experiments

Baselines and Datasets. We performed a number of experiments to evaluate
the efficacy of our proposal, with both loss functions. We compare our methods to
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nine other approaches for binary hashing, including Locality Sensitive Hashing
(LSH) [7], KLSH [11], SH [3], MDSH [12], BRE [4], ITQ [5], Anchor Graph
Hashing (1, 2 layer) [13] and Fast Hash [16]. We leave out comparison with
DGH [8], since it solves the same problem of partitioning the Laplacian of the
Anchor Graph as [13], but uses a different optimization technique. Also, note that
Fast Hash can be run both in supervised/unsupervised mode, but since all our
comparable methods are unsupervised, we compare only with the unsupervised
version. We evaluate the algorithms on a number of machine learning and vision
datasets, which vary in size, dimensionality, and number of classes. These include
toy datasets where the optimal code is known as well as many other datasets
like Nursery, MNIST, Caltech101, LabelMe, PhotoTourism and CIFAR.

Parameters. The distance matrix A is set up as the Euclidean distance between
features extracted for pair-wise items in each dataset. For image datasets like
CIFAR and Phototourism, we extract HOG features for each image. For machine
learning datasets, we use the features provided in the dataset itself. Also, α is
set to 0.1 throughout. An initial value of the solution is generated using random
hyperplanes similar to LSH.

Design. Broadly, we evaluate two aspects: (i) how well do the set of obtained
hash-codes approximate the original distances, and (ii) how well do the obtained
hash codes preserve semantic labeling of the examples. To address the issue of
distance approximation in (i), we use a two-fold approach: (a) We construct toy
datasets, where the ground-truth code (and the optimal objective) is known. So,
how well do the eleven algorithms optimize the objective relative to the optimal?
(b) We evaluate the goodness of nearest neighbor search in the binary/embedded
space. That is, precision of how many neighbors returned by our hash code are
“true” neighbors? Next, note that we can quantitatively evaluate the issue in (ii)
above because many datasets here have semantic labels for examples, so data
points with the same ‘labels’ are considered “semantic” neighbors as well. For
semantic label experiments, the data is divided into training set which is used to
construct the distance matrix on which codes are learned and test data, which
is used for evaluation only. For datasets where labels are available, we report
accuracies of the k nearest Neighbors (k = 3) of a given query, w.r.t. the same
class labels. This will help us demonstrate whether semantic concepts can be
identified using such an approach. These experiments are described next.

6.1 Distance Approximation

Minimization of Objective: We simulate toy datasets where the optimal code
is known. To do this, we randomly generate a code(X), and then create a distance
matrix A, which is a close estimate (modulo a small error) of the Hamming
Distance (H) obtained from X. We repeat this experiment by varying n, d and
the magnitude of noise added to the Hamming distance matrix (to obtain A). In
some sense, this represents the ideal input to the problem (though we may still
have multiple binary codes for the same distance matrix). For other comparable
methods, which require the affinity matrices, we generate that using the identity
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Fig. 1. Precision Values of Nursery, Mnist, Labelme, Cifar, Cifar 100 and Phototourism

Table 2. Ranking results wrt to SSD and �1 objectives.

Alg on Obj Rank 1 Rank 2 Rank 3

Alg-�1 on SSD 85 % 15 % 0

Alg-�1 on �1 97 % 3 % 0

Alg-SSD on SSD 60 % 36 % 4 %

Alg-SSD on �1 57 % 40 % 3 %

Aaff = 1
2 (2d1n×n −A). We run all 11 methods on each of the settings and record

rankings of the algorithms in terms of decreasing the objective, for both loss
functions. For convenience, below, we will call our actual algorithms Alg-SSD
and Alg-�1 and the distance functions as SSD and �1 respectively.

Table 2 shows the percentage of times (averaged across 20 realizations), Alg-
SSD and Alg-�1 achieves ranks 1 to 3 (1 being the best, ranks are only shown
up to 3 as neither algorithm does worse than third place in any iteration), while
minimizing these objectives. The plot shows that Alg-�1 is the best, minimizing
the �1 objective better than all other algorithms, with a mean weighted rank of
1.1. Alg-SSD is a close second, with a weighted rank of 1.45 across all the runs,
compared to other algorithms. These results show that our algorithms do much
better than the alternatives in getting close to the global optima.

Generalization to Unseen Data: Instead of looking at faithfully approximat-
ing all pair-wise distances, one may attempt to approximate distances of only the
nearest neighbors to a query point. To do so, we adopt the following procedure.
We divide the data into training and test sets (randomly selected, 1000 points
each), and compute distances between training to training and training to test
datasets. In order to evaluate how well NN distances are estimated using the
hash codes on unseen data, we first define a threshold, such that if the original
distance of a pair of points is less than the threshold, they are considered “true
neighbors”. Given a query and a threshold on the Hamming distance (set to
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3), the retrieved items are all examples whose Hamming distance to the query
is below this threshold. We compute precision as the proportion of retrieved
points that are indeed true neighbors. Figure 1 shows the precision as a function
of the number of bits for various datasets. In general, our method performs well
compared to the baselines.

6.2 Semantic Labels

Datasets such as Nursery, Mnist, Caltech 101 and Cifar (both datasets) have a
semantic label associated with each example/image. We present results on these
datasets next.

Fig. 2. Semantic Label NN Accuracy for Mnist, Nursery and Cifar, Cifar 100

Generalization to Unseen Data as a Function of Labels: We show several
plots of accuracy of k-nearest neighbors having the same label as the query
(Fig. 2) for Nursery, Mnist, Cifar and Cifar100 using binary hash codes obtained
using a (randomly selected) training set of 2000 and generalized to a much larger
testing set (which is typically the rest of the data). Note that some of the datasets
(such as Cifar) are harder to classify, therefore the relative percentage accuracy
varies depending on the dataset. However, in almost all cases, our models show
impressive performance in finding neighbors which have the same class label as
the query point.

Fig. 3. UCSD accuracy
results.

Effect of Number of Classes in Semantic
Label Experiments: We used Caltech101 to eval-
uate how the number of semantic class labels affect
the performance of our algorithm, since the dataset
has a large number of classes (up to 101) and a small
number of data items per class. Here, we use (the
mean of a small set of) pre-computed kernel matri-
ces obtained from UCSD MKL dataset since most of
the comparable methods can be run on the kernel
matrices (which can be used to define similarities
also). Whenever actual features were needed for an
algorithm, we generated them by implementing the approach in [30]. However,
since the features for the test dataset is unavailable, we limit our evaluation to
the training dataset only. For the same reason, Fast Hash (which needs features
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explicitly) could not be applied on this dataset. Figure 3 shows the results on the
Caltech 101 dataset, using 10, 50 and 101 classes. The plot shows that in most
settings, our methods outperform the other baselines. In addition, increasing the
number of classes does affect performance but not drastically.

Running Time: Each iteration of QPBO takes about one second and this is
repeated d (number of bits) times. So, given a choice of number of bits, the
run time varies from 4 secs to about a minute (when the number of bits is 64).
This is comparable to most of the methods tested in this paper, except Spectral
Hashing (and MDSH), which do not depend on the number of bits, since their
main computational bottleneck is computing the eigen vectors of a matrix once.

7 Discussion

Here we briefly discuss some issues related to our algorithm.

Size of Training Data. We performed limited experiments to see if increasing
the size of the training set improves generalization performance but found that in
general, the relative improvement saturates pretty quickly. Therefore, a moderate
size training set (if chosen randomly) is enough to ensure good generalization.
Similar training sizes have also been used in [11].

Rounding of Half Integral Variables in QPBO. In our case, we randomly
round the 1

2 variables to zero or one. Generally, this happens to fewer than 20%
of the variables, so it works fairly well in practice. If in the worst case, a large
number of variables have half-integral solutions, there is a mature body of work
to deal with this effectively. Roof duality [29,31,32] are specifically addresses
this issue and can be used though we did not find it necessary.

Existing Literature. In this paper, we discuss 17 other works on binary hashing
which are closely related to the ideas presented here. A more comprehensive (but
by no means, exhaustive) list can be found in the survey [33].

8 Conclusion

We present a fully combinatorial algorithm for learning hash codes whose Ham-
ming distance closely approximates a target similarity matrix. In a landscape
dominated by continous optimization methods for binary hashing, our algorithms
provide a different view point — a maximum flow/minimum cut based method
in the unsupervised setting. The implementation is simple and the solutions for
each hash code bit is provably partially-optimal. Experimentally, we show that
these methods exhibit competitive performance, compared against nine state of
the methods on seven different datasets.
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