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Abstract. We observe the distances between estimated function out-
puts on data points to create an anisotropic graph Laplacian which,
through an iterative process, can itself be regularized. Our algorithm
is instantiated as a discrete regularizer on a graph’s diffusivity opera-
tor. This idea is grounded in the theory that regularizing the diffusivity
operator corresponds to regularizing the metric on Riemannian mani-
folds, which further corresponds to regularizing the anisotropic Laplace-
Beltrami operator. We show that our discrete regularization framework is
consistent in the sense that it converges to (continuous) regularization on
underlying data generating manifolds. In semi-supervised learning exper-
iments, across ten standard datasets, our diffusion of Laplacian approach
has the lowest average error rate of eight different established and state-
of-the-art approaches, which shows the promise of our approach.

Keywords: Semi-supervised learning · Graph Laplacian · Diffusion ·
Regularization

1 Introduction

In semi-supervised learning, we discover a function f which, from a set of data
points and partial labels, propagates the labels to an unlabeled subset of data.
To achieve this, methods exploit the underlying ‘geometry’ of or ‘relationships’
between points in the input space to help learn f . Many times, the underlying
relationships between data points can be represented as a graph, or as a set
of data points sampled from an underlying manifold. In these cases, the graph
Laplacian is useful as it contains the pairwise relations or similarity wij between
data points in the unlabeled space.

Hence, many existing algorithms use the graph Laplacian as a regularizer to
directly enforce smoothness over the estimated function f : When a pair of data
nodes or points xi and xj are similar, we can cause their corresponding function
evaluations f(xi) and f(xj) to also be similar by directly trading a training error
against a regularization cost. Alternatively, other algorithms use simulations of
physical diffusion processes to indirectly promote smoothness on f : At each
point x, the evaluated function value f(x) is spread over the neighborhood of x.
The strength of this diffusion—the diffusivity—between two points xi and xj ,
is determined by their similarity wij .
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For semi-supervised learning, it has been shown that these two approaches
are actually equivalent (e.g. [1]): The solution of direct regularization-based
approaches that trade training error and regularization cost is also the solution
at the limit case of the diffusion process over time. Thus, the graph Laplacian is
both the regularizer and the generator of the diffusion process. As such, we will
be using the term ‘regularization’ interchangeably with ‘diffusion’.

In general, due to the ill-posed nature of semi-supervised learning, the esti-
mated f evaluations are noisy, and so the constructed new anisotropic graph
Laplacian is also noisy. As such, in this paper, we propose to regard the graph
Laplacian itself as an object which can be regularized. This is similar to the
tradition in learning algorithms where the f estimate is regularized to prevent
over-fitting to noisy data.

Our approach builds upon the analysis of learning over continuous spaces,
as is commonly assumed in geometry-based semi-supervised algorithms: As the
number of sampled data points increases to infinity, the corresponding graph
converges to the underlying manifold M which generated those data samples.
In this case, the graph Laplacian converges to the Laplace-Beltrami operator on
M . Roughly, applying the Laplace-Beltrami operator to a function f measures
the first-order variation of f . This operator lets us regularize f by penalizing the
first-order f variation.

Our idea of regularizing the graph Laplacian itself extends in the continuous
space to regularizing the Laplace-Beltrami operator itself: We measure the vari-
ation of the structure that measures the variation of f . As we will show, this
structure is prescribed by the metric on M , rendering our framework into metric
regularization. In general, regularizing the metric on M is a difficult problem
when the manifold M is only observed through sparse data points, as is typical
in practical applications. Using recent results on the equivalence of the metric
on M and the continuous diffusivity operator [2], we develop a regularization
framework that enforces the smoothness of the diffusivity operator as a surro-
gate. Then, discretizing our continuous space formulation into a finite graph G,
we construct an efficient regularization framework for the graph Laplacian.

We show that this discrete regularization framework on G converges to the
continuous Laplacian regularization on M based on convergence analysis of the
graph Laplacian [3,4] and the equivalence of inducing an anisotropic diffusion
process with a new metric on M [2]. In experiments, we demonstrate that the
resulting algorithms significantly improves upon existing linear/non-linear, and
isotropic/anisotropic diffusion-based semi-supervised learning algorithms, as well
as other state-of-the-art algorithms.

Related work. Anisotropic diffusion has been known to be particularly effective in
processing two-dimensional images [5] and surfaces [6]. Szlam et al. [7] extended
these algorithms to high-dimensional graph structured data as discrete approxi-
mations of smooth manifolds. The resulting semi-supervised learning and denois-
ing algorithms demonstrated significant improvement over existing isotropic dif-
fusion algorithms and isotropic graph Laplacian-based regularization algorithms.
Recently Kim et al. [2] further extended and improved upon this framework for
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non-linear diffusion. Our approach extends both the linear diffusion algorithm of
Szlam et al. [7] and the non-linear diffusion algorithm of Kim et al. [2] by intro-
ducing the Laplacian as a new object to be diffused/regularized in addition to
the classification function f being diffused. As discussed previously and shown
in Sect. 2, regularizing the Laplacian is equivalent to regularizing the metric
on manifolds, which we take to instantiate our practical algorithms. From this
perspective, our approach can be regarded as an instance of tensor regulariza-
tion [8–10]. Existing tensor regularization approaches rely on known manifold
structure (e.g. images or surfaces) [8,9] or they are specialized on specific graph
connectivities (e.g. edges focus on orthogonal transform between node data [10]).
In contrast, our algorithm is applicable to any graph structured data without
having to access the underlying data generating manifold or to introduce restrict-
ing assumptions. Accordingly, one of our main contribution is extending existing
tensor regularization approaches to graph-based semi-supervised learning.

Our algorithm refines the original graph Laplacian throughout the diffusion
process. A single fixed instance of the graph Laplacian can be regarded as a
pseudo-inverse of a similarity kernel matrix (Sects. 2 and 4, and [11,12]). In this
sense, our algorithm can also be regarded as an instance of spectral kernel design
where the kernel matrix (inverse of Laplacian in semi-supervised learning context)
is automatically constructed based on the spectral analysis of the kernel matrix
itself [11,12]. Section 4 discusses this comparison, and Sect. 5 presents experimen-
tal comparisons [11,12]. This perspective also establishes a connection between
our approach to graph denoising and link prediction algorithms. In particular,
we show that our linear diffusion algorithm corresponds to an iterative solver of
existing graph denoising [13] and ensemble ranking [14] algorithms (Sect. 4). In
experiments, we demonstrate that adopting our approaches in a linear diffusion
algorithm improves semi-supervised learning performance and, furthermore, non-
linearly extending them could lead to even further performance improvement.

Overview. To explain our approach, we will first introduce regularization of the
Laplace-Beltrami operator on continuous manifolds and show that this is equiv-
alent to regularizing a Riemannian metric on M (Sect. 2). However, regularizing
a metric on M is not straightforward, so we show that the goal of regularizing a
metric on M (or, equivalently, the Laplace-Beltrami operator) can be achieved
by regularizing the diffusivity operator on M as a surrogate in the context of
anisotropic diffusion (Sect. 3). As such, we introduce an anisotropic diffusion
process on M , and also show that by discretizing this process to sampled data
we can achieve a practical metric regularization algorithm which still converges
to the solution of the continuous case. Finally, with this, we present a new semi-
supervised learning algorithm that jointly diffuses classification functions and
the diffusivity operator (Sect. 4).

2 Smoothness of the Laplace-Beltrami Operator

We begin by formally defining regularization of the Laplace-Beltrami opera-
tor on continuous manifolds, and show its equivalence to metric regularization.
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The Laplace-Beltrami operator (or shortly, Laplacian) Δg : C∞(M) → C∞(M)
on a Riemannian manifold (M, g) with a metric g is a second order differential
operator:

Δgf = ∇g∗∇gf, (1)

where ∇g : C∞(M) → TM and ∇g∗ : TM → C∞(M) are the gradient and
divergence operators, respectively and TM is the tangent bundle of M .

The typical way to regularize a linear operator (such as Laplacian) is to
minimize its operator norm, which corresponds to the largest operator eigen-
value. This finds numerous applications including storage allocation [15] and
system stability analysis [16]. Understanding the significance of this approach to
semi-supervised learning is not straightforward as, for semi-supervised learning,
Zhang and Ando [11] actually suggest exactly the opposite: It has been demon-
strated that maximizing the largest eigenvalues of the Laplacian corresponds to
minimizing the upper bound on the generalization error. More precisely, Zhang
and Ando proposed decreasing the smallest eigenvalues of the kernel matrix K
with the pseudo-inverse of the Laplacian L+ being a special case of K.

Instead, our regularization approach is based on the analysis of the spatial
behavior of the Laplacian. First, we will explain our method, but interestingly,
we will show that the approach of Zhang and Ando [11] leads to a construction
which is similar to our linear diffusion framework Sect. 4.

The Laplacian on the Euclidean space R
m can be written as [3]:

[ΔR
m

f ](x):=
∑

i=1,...,m

∂2

(∂xi)2
f(x) = lim

r→0

1
Cmr2

([AB(x)f ] − f(x)) , (2)

where

[AB(x)f ] =
1

vol(B(x, r))

∫

B(x,r)

f(y)dy, (3)

Cm is a constant depending only on m, B(x, r) is a ball of radius r centered at
x, and vol(B) is the volume of B. The equality in Eq. 2 implies that roughly, the
Laplacian ΔR

m

f of a function f evaluated at x measures the deviation of f(x)
from its average [AB(x)f ] taken at a local neighborhood. This characterization
suggests that the behavior of the Laplacian is determined by the local averaging
operator AB(x). The underlying idea of our approach is to enforce the spatial
smoothness of the corresponding averaging operator on M .

As clearly seen from the integral form (Eq. 3), the operator AB(x) is spatially
homogeneous and therefore, its spatial variation is simply zero: Equivalently, the
Laplacian is homogeneous in R

m. Now to enforce our underlying idea of spatial
smoothness to manifolds, we adopt a generalization of this Laplacian representa-
tion to manifolds as proposed by Hein [17], and Coifman and Lafon [18]. Suppose
that (M, g) is an n-dimensional submanifold of Rm with i : M → R

m being the
corresponding embedding. The local averaging-based Laplacian estimate Δg

hf
on (M, g) is defined as
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[Δg
hf ](x) =

1

h2

(
f(x) − 1

dh(x)
[Ag

h(x)f ]

)
, where [Ag

h(x)f ] =

∫
M

kh(x, y)f(y)dV (x),

(4)

dh(x) = [Ag
h(x)1] with 1 being a constant function of ones, and dV is the natural

volume element of M (dV (x) =
√|det(g)|dx with g being the coordinate matrix

of g). The kernel kh is defined based on a Gaussian function on R
m:

kh(x, y) =
{

1
hm k(‖i(x) − i(y)‖2

Rm , h2) if ‖i(x) − i(y)‖Rm ≤ h
0 otherwise, (5)

with k(a, b) = exp (−a/b).
It has been shown that when M is compact, Δg

h converges uniformly to the
Laplacian Δg [17] as h → 0.1 From this convergence result and the definition
of the average operator Ag

h (Eq. 4), we can see that the spatial variation of Δg

is entirely determined by the metric g. This is not surprising as the Laplacian
itself is indeed, expressed as a function of the metric g: Writing Eq. 1 in local
coordinates {x1, . . . , xn} [19],

Δgf =
∑

i,j=1,...,n

− 1√|det(g)|∂j

(
[g−1]ij

√
|det(g)|∂if

)

=
∑

i,j=1,...,n

−[g−1]ij∂j∂if + (lower order terms), (6)

where ∂i := [∂/∂xi ]. Furthermore, as the second equality in Eq. 6 shows, by eval-
uating Δg on a function xixj , we can reconstruct the metric g. Therefore, defin-
ing a new regularization operator Δg is equivalent to determining a new metric
g. Unfortunately, this equivalence by itself does not make the regularization of
Laplacian easier since in general, regularizing a Riemannian metric is a non-trivial
problem.2 However, in the next section we demonstrate that applying this idea to
induce an anisotropic diffusion process on a finite graph G that approximates M ,
regularizing the metric (and equivalently the Laplacian) can be easily instantiated
by enforcing the smoothness of the local diffusivity operator on G.

3 Anisotropic Diffusion on Graphs and Manifolds

Having defined the Laplacian regularization and established its equivalence to
metric regularization, we now present continuous anisotropic diffusion on a
1 Here, we assume for simplicity that the underlying probability distribution p is uni-

form and M is compact. In general, any compactly supported distribution p can be
adopted instead. See [3] for details.

2 Defining a regularizer on a metric g is not straightforward since, by the construction
of the Riemannian connection, ∇g

Xg = 0 for all vector fields X on M . Furthermore,
even when the connection (defined on g) is made independent of a new metric g,
evaluating the derivative of a second-order tensor (g) from finite data points X is a
difficult problem in general.
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Riemannian manifold (M, g), and its discretization on graphs. We follow the con-
struction of Weickert [5] who applied an anisotropic diffusion process to images
as functions on R

2, which has been subsequently extended to functions on mani-
folds [2,7].

Anisotropic diffusion of a smooth function f ∈ C∞(M) based on a positive
definite diffusivity operator D : TM → TM is described as a partial differential
equation:

∂f

∂t
= ∇g∗D∇gf. (7)

At each point x ∈ M , D is represented (in coordinates) as a positive definite
matrix D(x) which controls the strength and direction of diffusion. If D is an
identity operator, Eq. 7 becomes isotropic diffusion. An important feature of
the diffusivity operator D is that it uniquely defines a new metric on M [2]:
Anisotropic diffusion on (M, g) generated by the operator ΔD := −∇g∗D∇g is
equivalent to an isotropic diffusion on a new manifold (M, g) with an updated
metric g which is given in coordinates as

g(x) = c(x)g(x)D−1(x), (8)

where c ∈ C∞(M), and g(x) and g(x) are the coordinate representations (matri-
ces) of g and g at x, respectively. In particular, in Riemannian normal coordinates
at x (based on g), g becomes Euclidean (i.e. [g]ij(x) = δij(x)), and therefore,
D(x) can be interpreted as a covariance matrix of a Mahalanobis distance. We
will henceforth refer ΔD as an anisotropic Laplacian. This operator will be used
to analyze the limit case behavior of the discretization of Δg (see Proposition 1).

In practical applications, the manifold M is not directly observed and instead,
a sampled point cloud X is provided (X ⊂ i(M) ⊂ R

m). The remainder of this
section focuses on a graph Laplacian-based discretization of Eq. 7.

A weighted graph G = (X,E,W ) consists of nodes X = {x1, ...,xu}, edges
E ⊂ X × X, and weights assigned for each edge in E:

wij = w(eij) := kh(i−1(xi), i−1(xj)), eij ∈ E,wij ∈ W. (9)

The graph gradient operator ∇G is defined as the collection of node function
differences along the edges:

[∇Gf ](eij) =
√

wij(f(xj) − f(xi)). (10)

while the graph divergence operator ∇G∗ measures the variation of functions
{S : E → R} on edges:

[∇G∗
S](xi) =

1
2di

∑

j=1,...,u

√
wij(S(eji) − S(eij)), (11)

where di =
∑u

j=1 wij . Given the two operators, the (isotropic) graph Laplacian
L is defined as

[Lf ](xi) = [∇G∗∇Gf ](xi). (12)
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Similarly to the case of continuous anisotropic diffusion (Eq. 7), an anisotropic
diffusion process on G can be introduced by placing a positive definite diffusiv-
ity operator in-between the gradient and divergence operators: The anisotropic
graph Laplacian LD and the corresponding diffusion process are defined as

[LDf ](xi) := [∇G∗
D∇Gf ](xi),

∂

∂t
f = [LDf ], (13)

where the graph diffusivity operator D is represented as

[DS](eij) = qijbij〈bij , S〉 (14)

with the basis function bij being the indicator of eij and the inner-product 〈S, T 〉
of edge functions S and T defined as 〈S, T 〉 =

∑u
i,j=1 S(eij)T (eij). It should be

noted that by substituting Eq. 14 into Eq. 13, LD can be constructed by replacing
wij in ∇G and ∇G∗ (Eqs. 10 and 11) with wij := wijqij and combining the
resulting two operators as in Eq. 12.

As discussed earlier, if X is sampled from (M, g), the graph Laplacian L con-
verges to the Laplace-Beltrami operator Δg as u → ∞ [4,20]. Now we generalize
this result to anisotropic graph Laplacian:

Proposition 1 (The convergence of LD to Δg ). Assume that (M, g) is
an n-dimensional Riemannian submanifold of Rmand (M, g) is a new manifold
with an updated metric g. Let X = {x1, . . . ,xu} be a sample from a compactly
supported, uniform distribution p on M and the coefficients {qij} of the graph
diffusivity operator D are given as

hmqij = k(‖xi − xj‖2Rm , h2) + k(−‖i−1(xi) − i−1(xj)‖g2 , h2). (15)

Then, LD converges to Δg almost surely as u → ∞, h → 0, and uhm+2/
log(u) → ∞.

Sketch of proof: Equation 15 essentially equates the pairwise distance
‖f(xi) − f(xj)‖D induced by D at points xi and the corresponding distance
measured in the resulting metric g: We represent wij(= wijqij) as the Gaussian
envelop of the new distance ‖xj − xi‖g: (wij = 1

hm k
(‖xi − xj‖2g, h2

)
). The con-

vergence proof is then completed by (1) the equivalence of anisotropic Laplace-
Beltrami operator on (M, g) and the isotropic Laplace-Beltrami operator on
(M, g) and (2) the convergence of the isotropic graph Laplacian to Laplace-
Beltrami operator (see Main Result of [3]). �

The conditions h → 0 and uhm+2/ log(u) → ∞ in the proposition are required
for the convergence of isotropic Laplacian [3]: This implies that the shrink speed
of kernel width parameter h has to be controlled in the sense that any ball-shaped
region of diameter h contains sufficiently many data points.

This result establishes a connection between the problems of estimating an
anisotropic Laplacian LD on a graph G and a metric g on a Riemannian man-
ifold (M, g), and it provides motivation on regularizing the graph diffusivity
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operator D as a surrogate to g in practical estimation problems in general.
However, Proposition 1 cannot be used directly in analyzing the behavior our
anisotropic diffusion algorithms since, as we shown shortly in Sect. 4, our goal is
to dynamically construct a new metric depending on the given dataset X and
the corresponding labels for a subset of X, rather than restoring a hidden, fixed
metric g. As such, the next section presents the development of a new metric
based on the variations of f evaluations.

4 Semi-supervised Learning Based on Non-linear
Anisotropic Diffusion on Graphs

Our semi-supervised learning algorithm simultaneously evolves the node-
function f as well as the regularizer LD based on anisotropic diffusion. First, we
discuss traditional f -diffusion, and extend it to the diffusion of regularizer LD.
Second, we combine the two diffusion processes (of f and LD).

Diffusion of f . Suppose that for the first l data points in X, the corresponding
labels Y = {y1, . . . ,yl} ⊂ R

c are provided where c is the number of classes.
Assuming that the class label of the i-th data point is q, yi is defined as a row
vector of size 1 × n where it has zero everywhere except for the q-th location in
which its value is 1. If the regularizer (or diffusion generator) LD is held fixed,
the corresponding (time-discretized) linear diffusion process can be stated as

f(t + δ) − f(t)
δ

= −LDf(t), where f = [f(x1), . . . , f(xu)]�. (16)

If D is an identity operator, Eq. 16 becomes isotropic diffusion. Otherwise,
it is anisotropic. For instance, Szlam et al. [7] proposed tuning the diffusivity
based on function evaluations f : On a graph G the diffusivity along the edge
eij becomes stronger or weaker as fi and fj are similar or different, respectively.
This idea can be implemented by directly controlling the diffusivity operator D
(Eq. 14):

qij = exp
(

−‖fi(t0) − fj(t0)‖2Rc

h′

)
, (17)

with a positive number h′ being a hyper-parameter. For anisotropic diffusion,
Szlam et al. [7] suggested initializing f(t0) by running few steps of isotropic dif-
fusion. This has significantly improved the convergence speed in our prelimi-
nary experiments. For all anisotropic diffusion algorithms compared in the experi-
ments, we initialized the solutions by executing 20 iterations of isotropic diffusion.

Recently, Kim et al. [2] have demonstrated that extending the linear diffusion
process in Eq. 16 to non-linear one can significantly improve the accuracy of the
resulting semi-supervised learning algorithm:

f(t + δ) = (I − δLD(t))f(t). (18)
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Fig. 1. We regularize the Laplacian on manifolds by enforcing the smoothness of
the corresponding diffusivity operator. Instantiating this for graphs, our algorithm
enforces the smoothness of the graph diffusivity functions {D1, . . . , Du}: If x1 and x2

are close, the corresponding diffusivity functions D1(·) and D2(·) should be similar,
e.g., D1(x3) ∼ D2(x3) and D1(x4) ∼ D2(x4).

This process is identical to Eq. 16 except that LD now depends on t based on
Eq. 17.

Diffusion ofLD. Now we apply the diffusion process developed in the previous
paragraph to evolve the diffusivity operator D. To facilitate this process, we
cast D that originally maps from the spaces of edge functions to itself, to a set
of functions on X (Fig. 1): We take inner products of D with basis functions
{bij ⊗ b′

ij} (with ⊗ and b′
ij being a tensor product and a dual vector of bij ,

respectively):

D ⇒ {D1, . . . , Du} with Di(xj):=〈bij , [Dbij ]〉. (19)

Now we can construct a sparse matrix M ∈ R
u×u by combining column-wise

the elements of {Di}, i.e. M[:,i] = [Di(x1), . . . , Di(xu)]�.3 Here, the sparsity
is induced by adopting the h-neighborhood (Eq. 5) or k-nearest neighborhood
(NN) used in constructing the isotropic weight matrix {wij}. In the experiments,
we use k-NN and regard k as a hyper-parameter. The convergence results of
Proposition 1 can be easily modified to k-nearest neighborhood case (e.g. see
Sect. 2.4 of [17]).

Using M as a surrogate, the diffusion of LD and its time discretization, are
stated respectively as:

∂M
∂t

= −LDM,M(t + δ) = (I − δLD(t))M(t). (20)

Joint diffusion of f and LD. The two diffusion processes for f (Eq. 18) and for
LD (Eq. 20), respectively are both governed by LD. At the same time, they con-
stantly update LD. We propose interweaving the two processes: We start with
the linear diffusion process of f (i.e. LD is fixed at the L). Then, at each N -th
iteration of the diffusion, LD is updated based on Eq. 17 and subsequently by the
diffusion process on LD (Eq. 20). Here we fix N at 20 which provides a moder-
ate tradeoff between the flexibility (non-linearity) of LD and the computational
3 We adopt Matlab notation where A[:,i] represents the i-th column of matrix A.
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Algorithm 1. AND : Semi-supervised learning using combined diffusion of
function and Laplacian.
Input: Data points X = {x1, . . . ,xu} ⊂ R

d; labels Y = {y1, . . . ,yl} ⊂ R
c;

hyper-parameters T1, T2, h′, and k (see Sect. 5)
Output: Diffused labels f .

Build an isotropic graph Laplacian L based on Eq. 9
for t = 1, . . . , T1 do

Update f(t) based on Eq. 18.
At each 20-th iteration Update LD(t) based on Eq. 17;
for t′ = t, . . . , t + T2 do

Update LD(t′) based on Eq. 20;
end

Assign labels to f t and LD(t);
Normalize LD(t);

end

complexity. The numbers of diffusion iterations T1 and T2 for f (Eq. 18) and M
(Eq. 20) are taken as hyper-parameters. At each iteration, the Laplacian matrix
LD is normalized (we use Random-walk normalization [3]) and parts of f and
D are updated based on the provided labels: If the i-th data point is labeled,
the i-th row of f(t + 1) is replaced by the corresponding label. Also, if the i-th
and j-th data points are labeled, Dij and Dji are assigned with 1 (if the class
labels of i-th and j-th data points are the same) or 0. Algorithm1 summarizes
the proposed joint diffusion process.

Time complexity. Overall, the time complexity of our algorithm depends on the
number u of data points and the size k of the nearest neighborhood. Each f -
diffusion iteration requires multiplying the matrix LD with a vector f while
M-diffusion iteration requires the product of LD and M. Due to the sparsity of
these matrices, this operation can be performed even for relatively large datasets.
For the MNIST dataset with 60, 000 data points, running 100 iterations of the
joint diffusion process takes around 30 s in MATLAB on a 3.6 GHz CPU.

Relations to existing work. The relationship between our algorithm and related
existing works presented in Sect. 1 is interesting. Equation 20 is non-linear as the
diffusion generator ΔD depends on the object M being diffused. If we linearize
Eq. 20 at t0, i.e. approximating the generator ΔD(t) by the fixed time instance
ΔD(t0), we can recover a closed form regularization solution (see Zhou et al. [1]):

LD∗ ⇐ M∗ = arg min
M∈Ru×u

‖M − M(t0)‖2F +
δ

1 − δ
tr[M�LD(t0)M], (21)

where ‖A‖F and tr[A] are the Frobenius norm and the trace of matrix A, respec-
tively. This type of regularization has been used in few applications including
graph denoising and link prediction [13], and ensemble ranking [14]. In addition,
this perspective facilitates comparison of our framework with Zhang and Ando’s
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approach [11] where the inverse of the graph Laplacian is regarded as an instance
of the (similarity) kernel matrix K. Their analysis on the effect of the largest
eigenvalues of L on the expected error bound led to an algorithm that takes
powers of the Laplacian: Lp with p ∈ Z

+ is used as the regularizer instead of L.
If we take the graph Laplacian L as the object to be diffused in Eq. 20 instead of
the anisotropic diffusivity operator M,4 the resulting diffusion process is equiv-
alent to regularizing the original weight matrix {wij}. Now assigning a specific
value 0.5 to δ, and linearizing the resulting diffusion equation, we obtain5

L(t + δ) = δL2(t). (22)

Therefore, Zhang and Ando’s algorithm can be regarded as taking a single step
of the linearized diffusion on the original isotropic regularizer L before f is
subsequently optimized. Interestingly, taking powers of the Laplacian can also
be regarded as constructing high-order regularizers. Extending the convergence
result of the graph Laplacian to Laplace-Beltrami operator on manifolds, we
obtain the analogy between high-order regularization and iterated Laplacian.
When f ∈ C∞(M) and u → ∞ [21],

− 1
u

Cnf�Lpf →
∫

M

f(x)[(Δg)pf ](x)dV (x)

=

⎧
⎪⎨

⎪⎩

∫
M

(
(Δg)

p
2 f(x)

)2

dV (x) if p is even
∫
M

∥∥∥[∇g(Δg)
p−1
2 f ](x)

∥∥∥
2

g
dV (x) otherwise,

(23)

where Cn is a constant depending on the dimensionality n and the equality is
the result of Stokes’ theorem. Therefore, f�Lpf approximates high-order varia-
tions of f .6 Zhou and Belkin [21] demonstrated that using high-order regularizers
can significantly improve the semi-supervised learning performance as they help
avoiding the degenerate case where the function obtained by minimizing com-
binations of the training error and the regularization cost is everywhere zero
except for the labeled data points. Therefore, the linearization of our diffusion
framework can be regarded as adopting high-order regularizers. In particular,
the linearized analytical solution in Eq. 21 can be regarded as a variation of
adopting an infinite-order variation measure, as the solution corresponds to the
limit case of Eq. 20.

Unfortunately, more rigorous comparison between our approach and that of
Zhang and Ando’s algorithm [11] and equivalently of Zhou and Belkin [21] is
not straightforward since (1) in our diffusion algorithms we do not iterate the
diffusion process infinite times (i.e. t → ∞) but terminate it at a given time step

4 Essentially LD and M contain the same information.
5 When in general, δ �= 0.5, iterating p-times, the linearized diffusion generates an

operator polynomial. This corresponds to using a (selected) combination of differen-
tial operators up to �p/2�-th order.

6 For simplicity, here we regard that f is a one-dimensional function.
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T1 which is an hyper-parameter taking a similar role as δ in Eq. 21; (2) Fur-
thermore, our diffusion is non-linear where the regularizer itself is dynamically
evolved. In this case, the solution cannot be straightforwardly represented in
closed-form. In the experiments, we demonstrate that this non-linear diffusion
of LD leads to a significant improvement over the linearized diffusion case and
equivalently, over the analytic solution of Eq. 21. Also, an important advantage
of the diffusion formulation (Eq. 20) over the analytical solution (Eq. 21) is that,
diffusion formulation facilitates a sparse framework: At time 0, the sparsity of
M is controlled by the k-nearest neighbor size. As the diffusion progresses, the
matrix M tends to be denser. In this case, the solution M can be directly spar-
sified by assigning selected elements of M with zero. In our experiments, we
sparsified M by replacing it with M ◦ (Iw)2 where ◦ is the Hadamard product
and Iwij = 1 if wij > 0 and Iwij = 0 otherwise. In contrast, the analytical solution
(Eq. 21) leads to a dense matrix, and therefore it cannot be straightforwardly
applied to large-scale problems.

5 Experimental Results

Setup. We evaluate the performance of our Laplacian regularization framework
with AND (Algorithm 1): the anisotropic non-linear diffusion of the diffusiv-
ity operator LD. To facilitate the comparison of linear and non-linear diffusion
processes on LD, we also implemented ALD : the linearization of AND, where the
evolution of LD is performed only once at the beginning of the f -diffusion and
held fixed thereafter. To assess the role of Laplacian diffusion itself, we compared
with three different diffusion-based semi-supervised learning algorithms. The
isotropic diffusion algorithm (Iso) uses a fixed L throughout the optimization,
while the linear anisotropic diffusion algorithm (AL [7]) constructs an anisotropic
Laplacian LD which is fixed throughout the subsequent f optimization. The
non-linear anisotropic diffusion algorithm (AN [2]) updates LD during the f -
optimization but LD itself is not diffused. For all experiments, the initial graphs
were constructed based on k-NNs using a Gaussian weight function (Eq. 5).

We also conduct comparison with existing semi-supervised learning algo-
rithms including Zhou et al.’s local and global consistency algorithm (LGC [1]),
Zhang and Ando’s algorithm that takes powers of Laplacian (p-L [11]), and
Wang and Zhang’s linear neighborhood propagation algorithm (LNP [22]). LGC
is equivalent to constructing an analytical solution as the limit case of Iso while
p-L implements the high-order regularization, which is equivalent to Zhou and
Belkin’s iterated Laplacian-based algorithm [21]. All four anisotropic diffusion-
based algorithms compared in the experiments construct LD based on evalua-
tions of f . However, in general, the regularizer can be constructed based on any
a priori knowledge available on the problem. LNP calculates a new Laplacian
by representing each point in X based on a convex combination of its neighbors
and assigns the corresponding combination coefficients as edge weights {wij}.

All algorithms evaluated in this section requires the nearest neighbor size k
which was regarded as a hyper-parameter. Also, all algorithms except for LNP,
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Table 1. Performances of different semi-supervised learning algorithms: Error rates
(standard deviations). The three best results are highlighted with boldface blue,
italic green, and plain orange fonts, respectively. The last row is a percent error differ-
ence from the lowest possible error, averaged across all datasets. The intuition is that
a technique achieving 100% would be best performing in all datasets

LGC [1] p-L [11] LNP [22] Iso AL [7] AN [2] ALD (ours) AND (ours)

USPS 7.03 (2.30) 4.07 (1.28) 8.71 (1.82) 7.52 (1.45) 6.00 (2.20) 4.35 (1.38) 4.09 (0.47) 3.28 (0.47)

COIL 7.65 (2.56) 9.95 (2.82) 6.31 (2.03) 8.24 (1.31) 8.45 (1.24) 7.53 (0.74) 7.63 (0.93) 6.76 (1.61)

COIL 2 1.53 (1.60) 0.80 (0.86) 2.53 (1.18) 0.45 (0.32) 0.79 (0.35) 0.39 (0.29) 0.76 (0.26) 0.33 (0.21)

PCMAC 12.48 (1.68) 9.56 (1.04) 13.52 (1.40) 12.34 (1.89) 13.54 (1.14) 13.46 (2.21) 10.98 (0.82) 8.96 (2.00)

Text 25.59 (3.44) 22.33 (1.89) 36.31 (3.38) 28.72 (2.13) 27.01 (1.51) 26.87 (2.00) 23.89 (2.28) 23.09 (2.07)

ETH 10.92 (1.14) 10.05 (0.93) 13.34 (2.28) 11.62 (1.03) 11.27 (1.18) 10.04 (0.88) 9.96 (0.77) 10.11 (0.85)

Cal101 53.41 (0.56) 53.41 (0.56) 65.52 (0.59) 53.22 (0.64) 52.36 (0.71) 52.23 (0.87) 52.26 (0.76) 52.26 (0.75)

MNIST 4.50 (0.49) 3.66 (0.16) 5.44 (0.47) 5.08 (0.25) 4.92 (0.24) 3.72 ( 0.28) 4.72 (0.20) 3.65 (0.18)

MPEG7 2.93 (0.27) 2.90 (0.08) N/A (N/A) 3.33 (0.56) 3.11 (0.52) 2.87 (0.53) 2.71 (0.19) 2.69 (0.12)

SwL 2.29 (0.38) 2.29 (0.52) N/A (N/A) 2.45 (0.47) 2.54 (0.24) 2.45 (0.44) 2.35 (0.21) 2.38 (0.29)

Avg. % 159.72 124.21 231.72 135.11 140.30 115.71 123.82 101.60

requires determining the scale of the input kernel h (Eq. 5). Adopting the exper-
imental convention of Bühler and Hein [23], h was adaptively determined for
each point xi ∈ X such that hi becomes half of the mean distance from xi to
its k-nearest neighbors. For all diffusion-based algorithms (Iso, AL, AN, ALD,
and AND), the number of iterations T1 and the time step size δ have to be deter-
mined. Our preliminary experiments have demonstrated that the performance of
these algorithms are not significantly affected by δ when it is smaller than around
0.2. We fix δ at 0.1 throughout the entire experiments. Except for the linear diffu-
sion Iso, all diffusion algorithms also require determining the output kernel scale
h′ (Eq. 17). In addition, the proposed diffusion of Laplacian algorithms (ALD
and AND) have the number of Laplacian diffusion T2 as a hyper-parameter.
LGC has a regularization hyper-parameter which has a similar role to T1 in the
diffusion-based algorithms. LNP has a similar hyper-parameter α (See [22]). In
addition, p-L has the power p as an additional hyper-parameter. Throughout
the entire experiments, each training dataset is divided into equally-sized sub-
training and validation datasets and the hyper-parameters were tuned based on
measuring the validation error. For all experiments with diffusion algorithms, we
tune the hyper-parameters of Iso first. Then, the parameters of the remaining
diffusion algorithms were chosen by restricting the search space of k only at the
vicinity of the optimal value (based on the validation error) for Iso. Furthermore,
the search space of h′ for AN, ALD, and AND were similarly determined based
on the optimal value of AL. This resulted in the total number of ALD and AND
parameter evaluations being only around three times larger than that of AL.

We evaluate the performances of all algorithms on ten different datasets:
USPS, COIL, COIL2, and Text datasets are commonly used in assessing the per-
formances of semi-supervised learning algorithms. These sets are obtained from
Chapelle et al.’s benchmark datasets repository. See [24] for details of experi-
mental settings. The experiments for MNIST [25] and PCMAC are prepared in
the same way.
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The Swedish leaf dataset (SwL) consists of 1,125 images of 15 different tree
species [26]. Following Ling and Jacobs [27] and Kim et al. [2], we use Fourier
descriptors to represent each object and use 50 labels per class. We use the code
and dataset kindly shared by [26]. The MPEG7 shape dataset [28] contains 70
different object silhouettes, each of which has 200 instances. Following [29], we
used the pairwise distance matrix obtained as the results of shape matching [30]
to construct the initial Laplacian L. For both SwL and MPEG7, each data
point is not explicitly represented. Instead, only the relationships between data
points are presented as pairwise distances. For these datasets, the results for
LNP are not available as it requires explicit data representation. The ETH-80
dataset consists of 8 different object classes each of which has 410 instances.
Each data point is represented by a histogram of oriented gradients, with 50
labels set following conventions [31]. We use the preprocessed dataset kindly
provided by [31]. The Caltech101 dataset (Cal101 ) contains 8,677 images of 101
different object categories. We use a combination of GIST, pyramid of histogram
of oriented gradients, and local binary patterns as features, as kindly shared
by [32]. For all datasets, the experiments were repeated 5 times with random
label selections and the results were averaged.

Results. Table 1 summarizes the results. Overall, the baseline isotropic diffu-
sion algorithm (Iso) has been significantly improved by anisotropic diffusion
algorithms as well as other state-of-the-art algorithms. The linear neighborhood
propagation algorithm (LNP) and local and global consistency (LGC) are the
best on COIL and SwL, respectively. Except for SwL, p-L constantly outper-
formed these algorithms, demonstrating the effectiveness of high-order regular-
ization. The performance of ALD is roughly on par with p-L. This is in accor-
dance with the observation that ALD corresponds to an iterative algorithm
that optimizes the criteria adopted by p-L (Sect. 4). On the other hand, the sig-
nificantly improved performance of AND over ALD demonstrates the effect of
non-linear Laplacian diffusion.

The general tendency observed among the four anisotropic diffusion algo-
rithms (AL, AN, ALD, and AND) is that non-linear diffusion and Laplacian
diffusion improve over both linear diffusion and function-only diffusion, respec-
tively. A notable exception is Cal101 which highlights the main limitations of
non-linear diffusion based approaches. While AN, ALD, AND showed the three
best performances, all anisotropic diffusion algorithms did not show any notice-
able improvement from the isotropic case (Iso). This is because the initial label-
ing based on isotropic diffusion is very noisy (more than 50 % error rate); hence,
refining the graph Laplacian based on it as a starting point did not lead to a bet-
ter diffusion process. Similarly, the results of LGC and p-L are only comparable
to Iso while LNP is considerably worse.

For Text dataset, p-L was the best followed by ALD and AND. These
results are obtained based on automatically tuned hyper-parameters. If we
use ground-truth hyper-parameters (i.e. keeping the minimal test error dur-
ing hyper-parameter search), the performance of AND is more than 10% better
than p-L. This reveals another main limitation of our algorithm AND : When the
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hyper-parameters are tuned properly, AND can lead to significant improvements
over the linear (Laplacian) diffusion algorithms and over the corresponding limit
case p-Lap. However, AND has one more hyper-parameter than p-L, and so with
limited labeled data this can lead to worse performance through overfitting. Sim-
ilarly, for MNIST dataset, the performance of AND is only marginally better
than p-L, but when using ground-truth hyper-parameters the error rate of AND
shows a 14 % improvement over p-L.

In general, automatically tuning the hyper-parameters in semi-supervised
learning is an open problem especially due to the limited number of labeled data
points. Nevertheless, our two algorithms ALD and AND are included in the three
best algorithms for most datasets even with automatically tuned parameters.
The effectiveness of our algorithms may be improved in interactive scenarios,
where users inspect different parameter combinations and chooses ones best-
suited to their problem of interest.

6 Conclusions

The success of anisotropic diffusion in semi-supervised learning problems sug-
gests that adaptively tuning the regularizer to the problem and data can be
beneficial. However, existing algorithms did not regularize the regularizer itself.
We demonstrated that this idea does lead to improved semi-supervised learning
performance. Our framework builds upon the equivalence of inducing anisotropic
diffusion and metric construction on Riemannian manifolds: Regularizing the
regularizer boils down to regularizing the Riemannian metric tensor on mani-
folds. Instead of directly regularizing the metric tensor (which is a very difficult
problem when the manifold itself is not directly available), we regularize the
diffusivity operator on a graph. Our analysis shows that the resulting discrete
regularizer converges to the analytical regularizer on metric on Riemannian man-
ifolds. The resulting linear and non-linear anisotropic Laplacian diffusion algo-
rithms significantly outperforms classical diffusion-based algorithms as well as
the state-of-the-art semi-supervised learning algorithms.
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8. Tschumperlé, D., Deriche, R.: Diffusion tensor regularization with constraints
preservation. In: Proceedings of the IEEE CVPR, pp. I948–I953 (2001)

9. Castaño-Moraga, C.A., Lenglet, C., Deriche, R., Ruiz-Alzola, J.: A Riemannian
approach to anisotropic filtering of tensor fields. Sig. Process. 87(2), 263–276 (2007)

10. Singer, A., Wu, H.T.: Vector diffusion maps and the connection Laplacian. Com-
mun. Pure Appl. Math. 65(8), 1067–1144 (2012)

11. Zhang, T., Ando, R.: Analysis of spectral kernel design based semi-supervised
learning. In: NIPS, pp. 1601–1608 (2006)

12. Johnson, R., Zhang, T.: Graph-based semi-supervised learning and spectral kernel
design. IEEE Trans. Inf. Theor. 54(1), 275–288 (2008)

13. Kim, K.I., Tompkin, J., Theobald, M., Kautz, J., Theobalt, C.: Match graph con-
struction for large image databases. In: Fitzgibbon, A., Lazebnik, S., Perona, P.,
Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 272–285. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-33718-5 20

14. Szummer, M., Yilmaz, E.: Semi-supervised learning to rank with preference regu-
larization. In: Proceedings of the ACM CIKM, pp. 269–278 (2011)

15. Fan, M.K.H., Nekooie, B.: On minimizing the largest eigenvalue of a symmetric
matrix. Linear Algebra Appl. 214, 225–246 (1995)

16. Boyd, S., Yang, Q.: Structured and simultaneous Lyapunov functions for system
stability problems. Int. J. Control 49(6), 2215–2240 (1989)

17. Hein, M.: Geometrical Aspects of Statistical Learning Theory. Ph.d. thesis,
Fachbereich Informatik, Technische Universität Darmstadt, Germany (2005)

18. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmonic Anal. 21(1),
5–30 (2006)

19. Rosenberg, S.: The Laplacian on a Riemannian Manifold. Cambridge University
Press, Cambridge (1997)

20. Hein, M., Audibert, J.-Y., von Luxburg, U.: From graphs to manifolds – weak
and strong pointwise consistency of graph Laplacians. In: Auer, P., Meir, R. (eds.)
COLT 2005. LNCS (LNAI), vol. 3559, pp. 470–485. Springer, Heidelberg (2005)

21. Zhou, X., Belkin, M.: Semi-supervised learning by higher order regularization. In:
JMLR W&CP (Proceedings of AISTATS), pp. 892–900 (2011)

22. Wang, F., Zhang, C.: Label propagation through linear neighborhoods. In: Pro-
ceedings of ICML, pp. 985–992 (2006)

23. Bühler, T., Hein, M.: Spectral clustering based on the graph p-Laplacian. In: Pro-
ceedings of ICML, pp. 81–88 (2009)

24. Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press,
Cambridge (2010). Datasets: http://olivier.chapelle.cc/ssl-book/benchmarks.html

25. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
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