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Abstract. In this paper, we propose a new approach to 3D human pose
estimation from a single depth image. Conventionally, 3D human pose
estimation is formulated as a detection problem of the desired list of
body joints. Most of the previous methods attempted to simultaneously
localize and identify body joints, with the expectation that the accom-
plishment of one task would facilitate the accomplishment of the other.
However, we believe that identification hampers localization; therefore,
the two tasks should be solved separately for enhanced pose estimation
performance. We propose a two-stage framework that initially estimates
all the locations of joints and subsequently identifies the estimated joints
for a specific pose. The locations of joints are estimated by regressing
K closest joints from every pixel with the use of a random tree. The
identification of joints are realized by transferring labels from a retrieved
nearest exemplar model. Once the 3D configuration of all the joints is
derived, identification becomes much easier than when it is done simul-
taneously with localization, exploiting the reduced solution space. Our
proposed method achieves significant performance gain on pose estima-
tion accuracy, thereby improving both localization and identification.
Experimental results show that the proposed method exhibits an accu-
racy significantly higher than those of previous approaches that simul-
taneously localize and identify the body parts.
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1 Introduction

Real-time 3D human pose estimation is a core technique for activity recogni-
tion. It has diverse applications including human-computer-interface develop-
ment, teleoperation, health monitoring, and learning by demonstration(LbD) [1].
Conventionally, 3D human pose estimation is formulated as a detection problem
of the desired list of body joints. Most of the previous methods simultaneously
localize and identify joints, such as localization of left shoulder, with the expec-
tation that the accomplishment of one task would facilitate the accomplishment
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Fig. 1. Similar local depth features are exhibited by different body parts at various
poses. Thus, a local depth feature may be insufficiently distinctive to distinguish the
identity of parts

of other [2-5]. By contrast, we assert in this paper that identification hampers
localization; therefore, the two tasks are treated separately and significant per-
formance boost is obtained.

In depth images, similar local patch patterns are easily observed from dif-
ferent body parts at various poses. For example, in Fig. 1, right arm of the first
person, left arm of the second person, and left leg of the third person in the first
row shows similar depth map features. Similarly, in the second row, right hand
of the first person and left foot of the second and third person also share similar
depth features. Therefore, if one tries to localize a particular joint of interest
by primarily relying on local depth features, then a confusion between the parts
may arise [2,3,5]. On the contrary, for a given 3D configuration of joints and
possible pose candidates, people can easily infer the corresponding pose and dis-
tinguish which joints are matched to body parts such as head, knees, wrists and
etc., as shown in Fig.2. Thus, the configuration of joints itself without labels
already provides us a general idea of the body pose.

Based on the observation, we propose a new two-stage framework that first
localize joints and then assign identity to the discovered joint positions. This
strategy avoids the possible confusion between parts of similar depth maps in
the localization step by postponing the body part label assignment to the iden-
tification step, wherein the global configuration of joints can be exploited.

In particular, a regression tree that predicts the relative displacements of
the K nearest joints from a given input pixel position is trained in the localiza-
tion step. During the test, all the joint locations are predicted by aggregating
votes cast by the foreground pixels. Considering that each leaf node may con-
tain similar offset vectors from different body parts as well as different poses,
it can effectively pin-point joints from rare or unconventional poses, by sharing
a prediction model across different parts. As a result, in the experiments, our
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method shows enhanced accuracy compared to previous methods in particular
for wrists, elbows, ankles, and knees.

In the identification step, each joint position is identified for a given 3D
configuration of detected body joints. As shown in Fig.2, a configuration of
joints serves as a distinctive representation of a corresponding pose. Therefore,
the nearest exemplar is retrieved from the training set based on a simple distance
measure between point sets, and joint labels are transferred from this exemplar.
This simple strategy works sufficiently well enough to achieve the upper-bound
accuracy on the available dataset and effective enough to be applied to a real-
time operation.

Fig. 2. 3D configuration of joints itself provides a general idea of a pose. People can
easily find similar pose from possible candidates (below) and distinguish the joints,
even when only a 3D joint configuration is given without body joint labels (above)

In summary, the contributions of this paper are as follows. The 3D body
pose estimation problem is formulated into two subsequent problems, namely,
localization and identification, and a new two-stage pose estimation algorithm
is proposed to solve them. This approach makes both problem easier to solve,
thus enabling improvement for both tasks.

2 Related Works

Existing 3D human pose estimation methods can be classified into genera-
tive, discriminative and combined approach according to the presence of a
body model. Generative approaches [6-10] estimate pose by finding point cor-
respondence between the input depth map and the known body model. These
approaches usually require an accurate body model and good initialization to
avoid being trapped in a local optimum. Recently, Ye et al. [11] proposed a fast
and accurate generative method by representing a body as a Gaussian mixture
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model. On the contrary, discriminative approaches do not assume a generative
model and directly estimate the location of body joints. Random forest [12,13]
based approaches have achieved impressive performances in terms of speed and
accuracy by formulating 3D body pose estimation as pixel-wise classification [2],
offset regression [3], and random walk [5]. These approaches estimate the loca-
tion of each individual joint independently while, ignoring the spatial depen-
dence between them. To exploit global information, Sun et al. [4] proposed a
conditional regression forest that considers dependence between joints through
a global latent variable. All of these approaches focus on improving localization
accuracy of a given target joint, with the use of various cues including local and
global appearances.

Our method is also related to some works on 3D body/hand pose estima-
tion in which the extracted geometric extreme points are used as rough but fast
global configurations of body/hand poses. Baak et al. [14] used Dijkstra algo-
rithm to compute geodesic distances and consequently extract extreme points
from a point cloud to retrieve the nearest pose exemplar from the database.
Liang et al. [15] adapted the same idea to hand pose estimation. Qian et al. [16]
also initialized their tracking based hand pose estimation by detecting fingers
without identification. The weakness of the approaches using extreme points,
however, is apparent when desired parts, such as hands and feet, do not cor-
respond to the extreme points in the depth maps, for example, folded hands.
Therefore, all of the previous methods used detected extreme points to esti-
mate coarse global configuration, whereas elaborate localization of joints are
conducted simultaneously with identification

Works from Plagemann et al. [17] is related to our approach as they also
first extracted interesting points and then classified them into specific parts or
background. However, their interest point detector targeted on general interest
points rather than body joints. Given that several interesting points could also
be detected from the background, they used a classifier based on local features
to classify the points, rather than using a global joint configuration. In addition,
their method also exhibits the limitation of the aforementioned approaches using
extreme points. Agarwal and Triggs [18] detected points by shape descriptor
vectors instead of the extreme points, however detected points do not directly
corresponds to the location of joints. By contrast, our approach targets directly
the detection of body joints, thus enabling the use of the global configuration of
joints for identification.

The body joint localization without identification can also be interpreted
as semantic saliency detection [19,20]. The idea of limiting the search space
by finding the points of interest shares the same motivation behind saliency
detection. In our problem, saliency regions or the points of interest are defined
by semantically identifiable body joints.

3 Overview

We address the 3D human pose estimation problem from a single depth
image. We formulate this problem as two separate sequential problems, namely,
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Fig. 3. The offset distributions in leaf nodes are shown for 2-nearest joints(K = 2). In
each pair of images, the left image shows the distribution of offset vectors contained
in a leaf node and the right image illustrates the corresponding training images in the
leaf node. In both the left and right image, input pixel positions are marked as green
circles, and the offsets to the nearest and the second nearest joints are respectively
represented by red and blue dots. The average offset vectors for unidentified joint are
drawn with arrows. Note that many of leafs contain pixels from different body parts
as well as different poses. (Best viewed in color) (Color figure online)

localization and identification. The goal of the localization step is to discover
every joint location in the 3D world coordinate system without identifying labels.
Our method localizes joints based on a regression forest and k-means clustering.
The details of training and inference are explained in Sect. 4. In the identification
step, labels are assigned to each of the joint locations discovered in the previ-
ous step. Joints are identified by transferring labels from the nearest training
sample, whose joint configuration is closest to the estimated configuration. The
detailed procedures for exemplar set construction and nearest pose retrieval are
described in Sect. 5. Section 6 presents the evaluation of our method on the pub-
licly available dataset and provide the comparison with two existing methods.
We also present in Sect. 6 the analyses of the effect of the proposed localization
and identification decomposition and that of the system parameters.

4 Body Joint Localization Without Identification

We establish a variant of the Hough forest [21] to localize body joints, following
the approach of Girshick et al. [3]. However, in our proposed method, a regression
tree is trained to estimates offset vectors to the nearest K joints of any body
parts, whereas in [3] the forest was trained to regress offset vectors to the specific
body joints. In the test stage, every foreground pixel in the input depth image
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traverses the regression tree and casts K votes in the 3D world coordinate system.
The joints are localized by aggregating the votes cast by the regression tree.

4.1 Training Set Collection

Let us denote a set of body depth images by {I',I?,...} and the corresponding
ground truth poses by {P!, P?,...}. Each pose P is represented by a set of 15
skeletal body joint positions in the world coordinate system: P = (p1, pa, ..., D15),
where p; = (z,y,2), j = 1,...,15. The corresponding projected pixel coordinate
position of p in the depth image I and its depth are represented by p = (Z,7)
and d;(p), respectively. For a a given depth image, the corresponding points
are reconstructed in the world coordinate system using the camera calibration
parameters.

For a given position ¢ in a depth image of pose P™, the location of the closest
body joints from ¢ in the world coordinate system is expressed as

af () = arg min Ip —qll? (1)

and the k-th nearest joint from ¢ is found recursively as o} (¢). The offset vector
from ¢ to the k-th nearest joint af(q) is denoted by by A¥ = af(q) —¢. A
training sample S consists of a body depth image I, a pixel position ¢ in the
pixel coordinate system, and offset vectors to K nearest joints from ¢ in the
world coordinate system.

S=(I"q,Ags s AF), (2)

where K is the number of nearest body joints to consider.

4.2 Training Regression Tree

The goal of training is to find a regression tree that minimizes the sum of the
variances of offset vectors A’; in the leaf nodes. The objective function is formu-
lated as follows,

K
EQ =Y > D IAL Al (3)

Q.CQ (I",q)eQs k=1

where Qs is a set of training samples contained in a leaf node s, Q = {Q;} is a
partition of the training samples, and A_a,ms = ﬁ Z(I”,q)EQS A’; is the mean
offset vector of all the offsets in @Q)s. For notational simplicity, we slightly abused
the notation (I",q) € Qs to represent S = (I", ¢, A}], ...,Af) € Q.

The following depth difference comparison features, similar to those in [2],
are employed for splitting at the nodes:

it =i (a+ 2 ) —ar (a4 52 (1)
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Fig. 4. Qualitative results of the proposed method. In each pair of images, the left side
visualizes a voting result and the right side shows the estimated joint positions on the
input depth image. Estimated locations of joints are indicated by circles

where parameters § = (£, ;) are offsets from the current pixel position ¢. Given
that ¢, and £, are the values in the pixel coordinate system, they are divided by
depth to provide the same relative position in the world coordinate system at
different distances from the depth sensor.

The standard greedy decision tree algorithm is used to train a tree structure
and to obtain the parameters for node splitting [12]. In each node, samples are
iteratively separated into left and right children using a weak binary classifier
until the termination conditions are satisfied. A pool of binary tests consisting
of ¢ = (0,7) = (t1,t2,7) with random values of t;,%5, 7, where 7 is a threshold,
is generated to train a weak learner. At each node, all the binary tests in the
pool are evaluated and the ¢* that minimizes the following objective is selected:

K
PF = argm(;n Z Z Z ||A§ — Ao sl (5)

se{l,r} (I",q)€Qs k=1

where @ is a set of training samples reached at the current split node, Q;(¢) =
{8 =0U"a | fol,q) < 7.5 € Q} and Qr(¢) = Q \ Qi(¢). The objective
measures the uncertainty of leaf node prediction models by the sum of offset
variations.

For a set of training samples reached at each leaf node, representative values
are stored in the leaf node. Each set of offset vectors pointing to k-th nearest
joint are cluster them into two clusters by k& = 2-means clustering. A leaf node s
is represented by K pairs of two cluster centers and two corresponding relative
cluster sizes as

ICial A [Ci2]l A
(( Qs 7A041,C1,17 Q5] 7A0¢1’Cl,2>7

"

C A C A
(l é:‘ll’AaKyoK,l’%’AQK,CK,Z))' (6)
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where C1 and Cy o are sets of training samples clustered into the first and
second cluster, respectively, based on the k-th nearest joints. Afa,wck,i is the
average of offset vectors from k-th nearest joints, included in the i-th cluster
Ci- Figure 3 shows some examples of leaf nodes and the training samples they
represent. The leaf nodes contain offsets for different body parts at different

poses. See Fig. 3 for the detailed description.

4.3 Inference

During the test time, each foreground pixel of an input depth image passes
through the trained regression tree (Sect.4.2), until a leaf node s is reached.
From each of K pairs in Eq. (6), an element is randomly sampled according to
the probability proportional to the weight |Ck ;|/|@s|. Then, pixel casts votes
to K positions in the 3D world coordinate where the positions are obtained
by adding offset vectors to its own location. There are 15 different body joints,
therefore, 15 regions with dense votes are expected to be generated, which corre-
spond to the joint locations. Accordingly, k-means clustering [22] is used to find
cluster centers which represent joint locations. Some example results of voting
are shown in Fig.4. To make the clustering more reliable, the outlier votes are
excluded, which lies outside of the depth image image when projected to the
pixel coordinate, before the clustering. Also, the computation time for k-means
clustering is reduced by sub-sampling n, pixels. The detailed performance for
various values of ng is tested in the Sect.6.3. Note that there is still a room for
further improvement of both speed and accuracy by using an advanced method
to find a set of local clusters.

5 Body Joint Identification

Once the joint locations are discovered in the localization step, each joint is
labeled in the identification step by retrieving the nearest training sample as
an exemplar. Then, the labels from the exemplar is simply transferred. For the
exemplar retrieval, the distance between a set of joints P’ = {p},p5, - ,pis}
and pose P = (p1,pa, -+ ,p15) can be measured by rigidly aligning the exemplar
pose to the localized points.

15
d(P,P') = Z IsR(p; — Ac) = 05y — Ao)*. (7)

o() is the assignment function and Ac is the offset vector between the cen-
ters of foreground pixels. Respectively, s and R are scale factor and rotation
matrix that minimizes the sum of squared error between two set of points [23].
We use o(j) = argminjie ... 15} [[sR(p; — Ac) — (pjr — Ac)||* which assigns a
nearest discovered joint to each of known joint in an exemplar. The subscript of
{p},p5, - , D5} is used here only for distinction in the equation, while having
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Fig. 5. Comparison of body joint detection accuracy on the EVAL dataset

no relation with joint labels. For EVAL [24] dataset, however, only a minor accu-
racy difference is found between the least squared solution and simple translation
invariant point matching solution, and the simpler solution was implemented.

A set of exemplars from a subset of training set is constructed and a nearest
exemplar is retrieve. In order to diversify poses contained in the exemplars, well
scattered points [25] in the pose space are selected iteratively. In the first itera-
tion, a random sample is selected from the training set. In each subsequent itera-
tion, a sample whose pose is farthest from those of previously selected sample set
is selected. For the distance between a set of poses P and a pose P, the minimum
distance is used, d(P, P) = mingep leil lpi — r:|?, where P = (py,p2, -+, p15)
and R = (r1,79, -+ ,7r15).

In our experiments, the simple retrieval strategy almost achieves the upper
bound of average precision (AP) with 1000 exemplars on the EVAL dataset
(Sect. 6). This performance implies that the intermediate representation of joint
configuration is adequately discriminate to find the reliable nearest neighbor.
We only used the configuration of joints for the retrieval, without any depth
information. We believe incorporating depth information as a feature for each
joint label would further increase the accuracy by helping discriminate confusing
poses, which will have the same set of joint locations but with different labels.
However, we leave this aspect as future extension.

6 Experimental Results

The evaluation of the proposed method consists of three parts. In the first part,
we evaluate our method on the EVAL [24] dataset. We compare the performance
of our method with two previous 3D pose estimation algorithms, namely, the
method of Jung et al. [5] and Ye and Yang [11]. In the second part, we analyze
each step of our algorithm; the localization step the and identification step.
Finally, we investigate the effect of various system parameters on accuracy.

6.1 Comparison with Existing Methods

We evaluated our method on the publicly available EVAL dataset [24] using
leave-one-out cross validation, as done in the previous works [5,11]. The EVAL
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dataset consists of 24 sequences, which are obtained from 3 different people
performing 8 actions. The sequences from two people are used in the training set,
whereas the sequenced from excluded person is used as test set. Final accuracy
is averaged over all three people. We used the conventional 10 cm rule as an
evaluation measure [5,11]. If the distance between the estimated and ground
truth joint is less than 10 cm, then the estimation is considered to be correct. As
pose estimation is considered as the detection problem of every joints, AP is used
to quantify the accuracy for each joint, and the mean average precision (mAP)
of joints is used as the overall accuracy measure. The runtime is measured on a
PC with Intel Core 15-2500 3.3GHz CPU.

The accuracy comparison of our proposed method with those of Jung et al.
[5] and Ye and Yang [11] is shown in Fig. 5(a). The proposed method achieved an
mAP of 98.3 %, which is 5.7% and 6.2 % higher compared to 92.6 % and 92.1 %
of [5] and [11], respectively. As shown in Fig.5(b), our method outperforms the
previous works in every joint. In particular, our method improves accuracy of
second best methods by 8.7 %, 7.1%, 6.3% and 5.4 % for wrists, knees, ankles,
and elbows, respectively. The accuracy boosts are prominent for the joints with
large articulation, whereas AP of other joints, head, chest and shoulder, are
2.6 %, 2.8 %, and 2.4 % higher than the second best method, respectively. Figure 4
shows some qualitative results of our method. Each circle indicates the estimated
positions of joints.

We further evaluated our method on the EVAL dataset while varying the
detection threshold from 1 cm to 13 cm. The mAP values are shown in Fig. 6. The
curve steeply increases, showing 95.6 % mAP at 3cm threshold. Our approach
was able to precisely estimate the joint locations within 3 cm radius for 95.6 %
of time. This is higher accuracy percentage even compared to the 10 cm rule of
the previous methods.

6.2 Algorithm Analysis

In this section, we evaluate the accuracy of the localization step and that of the
identification step separately to investigate the effect of problem decomposition.
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When the joint localization is considered as a preprocessing step for the
joint detection, the upper bound of AP serves as a meaningful indication of
localization accuracy. On the other hand, the relative value of AP with respect
to the upper bound indicates the accuracy of identification step. Each ground
truth joint should be considered correctly detected if at least one of the estimated
joints exists within the distance threshold(10cm) to obtain the upper bound.
Upper bound matching allows for multiple corresponding matches for a single
joint. Ideally, the upper bound accuracy is achieved if every joint is properly
labeled.

Figure 7 shows the upper bound and AP for each joint. In our method, the dif-
ference between AP and upper bound is smaller than 0.1 %. The simple exemplar
matching method is sufficient to deal with the translation and scale variations
in the EVAL set. To deal with drastic view point and pose variations, we should
consider a pose tracking approach with temporal prior.

Table 1. Runtime speed comparison

Alg.
Runtime speed (fps) | 37

Ours | Jung et al. [5]

1262

Ye and Yang [11]
>30

Table 2. Runtime analysis

Proces Voting Clustering Labeling Total
(Sect. 4.3) (Sect. 4.3) (Sect. 5)
Runtime (ms) | 13 (48 %) 10 (37 %) 4 (15%) 7 (100 %)

The runtime speed comparison is shown in Table 1. Our method performs in
real-time (37 fps) under a single-core CPU operation. Ye and Yang achieves real-
time with GPU and Jung et al. is extremely fast with its random walk strategy.
The computation time used in each process of our method is shown in Table 2.
Most of the computation time is spent during the localization step, occupying
85 % of the entire process, where the offset generation from regression tree and
k-means clustering take about the same computational resources.
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6.3 Effect of the Parameters

In this section, we analyze the effects of different parameters on the performance
of our method. We performed the same experiment in Sect.6.1 on the EVAL
dataset while varying the number of training samples, the number of nearest
joints, the number of minimum samples allowed at each leaf node, the number
of subsampled offset votes, and the number of exemplars.

Figure 8(a) shows the AP values for each joint at varying the number of train-
ing samples during regression tree construction. Our method achieves 92.8 %
mAP using 500 training images, where each images contains about 8000 fore-
ground pixels. Head, knees, and ankles require a smaller number of training
samples while wrists, elbows, and shoulders need a larger number of samples to
achieve the same accuracy.

We also evaluated our method at different numbers of K nearest joints used
in the localization step. A high K increases the number of votes per joint as well
as the computational cost and memory, while making the voting results more
stable. However, with large K, the offsets reach farther away joints with higher
uncertainty. Each leaf node is also less likely to contain samples from different
parts and poses; thus, the effect of sharing different joints is reduced. The result
is shown in Fig. 8(b). When two-nearest joints are used, the accuracy is higher
for elbows and wrists, but lower for shoulders with respect to the accuracy when
three-nearest joints are used. We used K = 2 for all other experiments settings.
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Figure 9(a) shows the effect of the number of minimum samples 7., allowed
in each leaf node with unlimited tree depth when K = 2. Allowing a smaller num-
ber of samples increases the memory required for the model while better fitting
the training set. As the value of n,,;, varies from 128 to 8, mAP consistently
increases. We used 7,,;, = 8 for all the other experiments.

Figure 9(b) shows the mAP values at varying sub-sample sizes before k-means
clustering. As the clustering step consumes approximately 40 % of the total run-
time of our method, the sub-sample size directly affects both speed and accuracy.
With only 125 votes, our algorithm achieves 94.3 % mAP, which is higher than
those of the previous methods. We used sub-sampled 1000 votes for k-means
clustering for all the other experiments.

Figure9(c) shows the mAP values at varying numbers of exemplars used in
the identification step. With only 100 templates, our method achieved 93.4 %
mAP, which is comparable to those of the state-of-the-art methods. We used
1000 exemplars in all the other experiments.

7 Conclusion

In this paper, we propose a new two-stage framework for 3D human pose esti-
mation from a single depth image. Unlike existing approaches that address
localization and identification of body joints as a single task, our proposed
method decomposes the problem into two subproblems, namely, localization
without identification and identity assignment. These subproblems are then
solved sequentially. Our method effectively overcomes the confusion between
body parts and joints with large articulation by sharing the offset prediction
model across different body parts and poses. The experimental results show that
our method exhibits significantly improved performance compared with the pre-
vious methods. It achieved high accuracy particularly for wrists, elbows, ankles,
and knees, which are usually considered difficult to localized.

There are a number of different implementation improvements we may con-
sider in the future. First, a more advanced offset clustering scheme can be used.
We currently use the k-means clustering algorithm which may require large num-
ber of iterations and has high dependency on the initial points. There are various
advanced cluster and mode seeking methods available for replacing the k-mean
algorithm. Second, the simple least squared error point matching algorithm many
not be robust to large view point and pose variations. RANSAC like algorithm
can be used to deal with large view changes, as well as considering time sequenced
pose estimation which uses previous frame’s pose estimation as the initial pose
of current frame.

Acknowledgments. This work was supported by Hankuk University of Foreign
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