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Abstract. Simultaneous localization and mapping (SLAM) using the
whole image data is an appealing framework to address shortcoming of
sparse feature-based methods – in particular frequent failures in tex-
tureless environments. Hence, direct methods bypassing the need of fea-
ture extraction and matching became recently popular. Many of these
methods operate by alternating between pose estimation and comput-
ing (semi-)dense depth maps, and are therefore not fully exploiting the
advantages of joint optimization with respect to depth and pose. In this
work, we propose a framework for monocular SLAM, and its local model
in particular, which optimizes simultaneously over depth and pose. In
addition to a planarity enforcing smoothness regularizer for the depth
we also constrain the complexity of depth map updates, which provides
a natural way to avoid poor local minima and reduces unknowns in the
optimization. Starting from a holistic objective we develop a method suit-
able for online and real-time monocular SLAM. We evaluate our method
quantitatively in pose and depth on the TUM dataset, and qualitatively
on our own video sequences.

Keywords: SLAM · Monocular odometry · Dense tracking and
mapping

1 Introduction

Simultaneous localization and mapping (SLAM), also known as online structure
from motion, aims to produce trajectory estimations and a 3D reconstruction of
the environment in real-time. In modern technology, its application ranges from
autonomous driving, navigation and robotics to interactive learning, gaming and
enhanced reality [1–7]. Typically, SLAM comprises two key components: (1) a
local model, which generates fast initial odometry measurements (which often
includes a local 3D reconstruction – e.g. a depth map – as byproduct), and
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Fig. 1. During keyframe-to-frame comparison a dense depth map is build. Image, point
cloud and depth (top to bottom) are shown as they develop, for selected frames from a
single keyframe. (While depth is dense at the keyframe, their projections may not be.)

(2) a global model, which performs loop closures and pose refinement via large
scale sub-real-time bundle adjustment. In our work, we focus on the former, and
propose a new strategy for local monocular odometry and depth map estimation.

Estimating the 3D position of tracked landmarks is a key ingredient in any
SLAM system, since it directly allows for the poses to be computed w.r.t. a
common coordinate frame. Historically, visual landmarks are induced by sparse
keypoints, but there is a recent trend to utilize a dense (or semi-dense) set of
points (leading to a dense or semi-dense depth map representation) [8,9].

Another trend is the inclusion of different sensing modalities for depth esti-
mation. Often, methods exploit (a combination of) alternative sensors, such as
infrared, lidar and stereo camera setups, which natively provide fairly accurate
depth data [10–13]. Such algorithms are quite advanced and are often employed
even in consumer technology where hardware is controllable. Visual SLAM with
only monocular camera streams is less common and still challenging in litera-
ture [8,9,14–21]. Nonetheless, the monocular setup is very suitable for (1) long
range estimations, where stereo baselines are negligible, (2) light weight mobile
and wearable devices aiming for a minimal amount of sensors to reduce weight
and power consumption, and (3) legacy video footage recoded by a single camera.

Classical approaches for monocular visual SLAM are based on keypoint track-
ing and mapping [15–17], which produces a feature-based sparse depth hypoth-
esis. A number of methods have since been proposed which essentially alternate
between tracking (and pose computation) and dense depth map estimation: Most
prominently, [8] presents dense tracking and mapping (DTAM) which generates
a dense depth map on GPU. Similarly, [18–20] provide dense depth maps, but
like [8] also rely heavily on GPU acceleration for real-time performance. In con-
trast to these methods large-scale direct SLAM (LSD-SLAM) [9] focusses the
computation budget on a semi-dense subset of pixels and has therefore attractive
running-times, even when run on CPU or mobile devices. As a direct method
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it computes the odometry measurements directly from image data without an
intermediate representation such as feature tracks. Depth is then computed in a
separate thread with small time delay. Note that all these methods employ an
alternation strategy: odometry is computed with the depth map held fixed, and
the depth map is updated with fixed pose estimates. In contrast, we propose
joined estimation of depth and pose within a single optimization framework,
which runs twice as fast as LSD-SLAM to find structure and motion. In partic-
ular, we introduce minimal additional computational cost compared to that of
only the tracking thread of LSD-SLAM.

1.1 Contributions

In this work, we present a local SLAM front-end which estimates pose and depth
truly simultaneously and in real-time (Fig. 1). We revisit traditional setups, and
propose inverse depth estimation with a coarse-to-fine planar regularizer that
gradually increases the complexity of the algorithm’s depth perception. Note,
many systems for stereo vision or depth sensors incorporate local or global planar
regularization [12,13,22–24]. Similarly, we employ global planar constraints into
our monocular setup, and enforce local smoothness by representing each pixel as
lying on a plane that is similar to its neighbours’. Furthermore, similarly to many
algorithms in stereo (e.g. [10,22]), we reduce depth complexity via discretization,
in our case through planar splitting techniques which (in the spirit of graphical
methods) create labels “on demand”. In summary,

1. we formulate a global energy for planar regularized inverse depth that is
optimized iteratively at each frame,

2. we revisit depth and pose optimization normally considered separately, and
introduce a coarse-to-fine strategy that refines both truly simultaneously,

3. we establish our method as semi-dense, and find pose and depth twice as fast
as LSD-SLAM, by adding minimal cost to LSD-SLAM’s tracking thread,

4. we evaluate pose and depth quantitatively on the TUM dataset.

Closely related to our work is [25], where depth and pose is optimized simulta-
neously given the optical flow of two consecutive images. This approach is based
on image pairs. Our method considers video input and incrementally improves
its belief. In [26,27] planarity is proposed in conjunction with scene priors, pre-
viously learned from data, and [20] presents a hole-filling strategy for semi-dense
monocular SLAM. While these methods are real-time, they rely on keypoints at
image corners or gradients, which are later enriched with a planar refinement.
Importantly however, such methods fail in featureless environments. Finally, we
emphasis DTAM [8] performs batch operations on a set of images taken from
a narrow field of view, and henceforth introduces a fixed lag before depth is
perceived by the system. As this is often unacceptable for robotics setups, our
method updates depth incrementally after each frame.
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2 Proposed Energy for Monocular Depth Estimation

We formulate our energy function for poses and depth w.r.t. the photometric
error over time. Similar to LSD-SLAM, we employ a keyframe-to-frame com-
parison to estimate camera displacement and each pixels’ depth in the reference
image. Let us denote the keyframe as I and its immediately succeeding images
as (It)T

t=1. The tuple of valid pixel locations on the keyframe’s plane is repre-
sented by X = (xi)

|X |
i=1 in normalized homogeneous coordinates (i.e. zi = 1),

and their corresponding inverse depth values are expressed by D = (di)
|X |
i=1.

Since we aim to model planar surfaces, we use an over-parametrization given by
S = (sTi )

|X |
i=1

∼= R
3|X |, where si = (ui, vi, wi)T are planes with disparity gradients

ui, vi, and inverse depth at 0, wi. Hence, the relation di = sTixi holds.
Tuple Ξ = (ξt)T

t=1 denotes the changes in camera pose, where ξt ∈ SE(3) is
composed of rotation Rt ∈ SO(3) ⊂ R

3×3 and translation tt ∈ R
3 between the

keyframe I and frame It. In principle, the complete cost function should incor-
porate all available images associated with the current keyframe and optimize
over the depth and all poses jointly,

ÊTotal (S, Ξ) =
T∑

t=1

E
(t)
Match(S, ξt) + ESmooth(S). (1)

Here E
(t)
Match and ESmooth are energy terms related to image-based matching

costs and spatial smoothing assumptions, respectively. Before we describe these
terms in more detail in subsequent sections, we modify ÊTotal to be more suitable
for an incremental online approach. This is advisable since, the objective ÊTotal

involves the complete history of all frames It mapped to the current keyframe
I. Intuitively the optimization of the poses (ξt)T−1

t=1 is no longer relevant at time
T , as only the current pose ξT and S is required. Analytically, we introduce

E
(T )
History (S) := min

(ξt)
T−1
t=1

T−1∑

t=1

E
(t)
Match(S, ξt) (2)

where (ξt)T−1
t=1 is the tuple of poses, minimized in previous frames. By splitting

the first term in (1), the energy becomes

ÊTotal (S, Ξ) = E
(T )
History (S) + E

(T )
Match(S, ξT ) + ESmooth(S). (3)

Now we replace E
(T )
History with its second order expansion around

(S∗, ξ∗
1 , . . . , ξ∗

T−1

)
= argmin

S,(ξt)
T−1
t=1

T−1∑

t=1

E
(t)
Match(S, ξt), (4)

and thus we obtain an approximation of E
(T )
History(S), denoted E

(T )
Temporal(S):
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E
(T )
Temporal (S):=E

(T )
History (S∗) +

(
∇SE

(T )
History (S∗)

)T

(S − S∗)

+
1
2
(S − S∗)T

(
∇2

SE
(T )
History (S∗)

)
(S − S∗)

= E
(T )
History (S∗) +

1
2
(S − S∗)T

(
∇2

SE
(T )
History (S∗)

)
(S − S∗) (5)

As S∗ is a local minimizer of E
(T )
History, ∇SE

(T )
History(S∗) = 0. Furthermore, as our

choice of terms leads to a nonlinear least-squares formulation, ∇2
SE

(T )
History(S∗) is

computed using the Gauss-Newton approximation. Finally, since E
(T )
History jointly

optimizes the inverse depths (in terms of its over-parametrization S) and (inter-
nally) the poses, but E

(T )
Temporal is solely a function of S, we employ the Schur

complement to factor out the poses (ξt)T−1
t=1 . However, as the poses link the entire

depth map, the Schur complement matrix will be dense. We obtain a tractable
approximation by using its block-diagonal consisting of 3×3 blocks (correspond-
ing to si = (ui, vi, wi)T).1 The resulting objective at time T is therefore

E
(T )
Total (S, ξT ) = E

(T )
Temporal (S) + E

(T )
Match(S, ξT ) + ESmooth(S). (6)

There is a clear connection between E
(T )
Total, extended Kalman filtering and max-

imum likelihood estimation. If E
(T )
History is interpreted as log-likelihood, then(S∗, (ξ∗

t )T−1
t=1

)
is an asymptotically normal maximum likelihood estimate with

the Hessian as (approximate) inverse covariance (i.e. precision) matrix. The
Schur complement to factor out the poses (in the energy-minimization perspec-
tive) corresponds to marginalizing over the poses according to their uncertainty.
E

(T )
Total can be read as probabilistic fusion of past and current observation, but

this correspondence is limited, since we are searching for MAP estimates and not
posteriors. In the following section we discuss the remaining terms in E

(T )
Total.

2.1 Photometric Energy

The matching cost E
(T )
Match(S, ξT ) is derived from an appearance (e.g. bright-

ness) consistency assumption commonly employed in literature, e.g. [28]. Let us
define the monocular warping function W (xi, di, ξt) which maps point xi in the
keyframe to its representation x′

i in frame t by

x′
i = W (xi, di, ξt) = hom

(
RT

t (xi − ttdi)
)
, (7)

under camera rotation Rt and translation tt, where hom(·) normalizes the homo-
geneous coordinate. Now we express the matching energy as

E
(T )
Match(S, ξT ) =

∑

xi∈X
‖I(xi) − IT (W (xi, di, ξT )) ‖τMatch

, (8)

1 The block-diagonal is an overconfident approximation of the precision. As compen-
sation, we employ a forgetting factor λTemporal in our implementation (see Sect. 3.2).
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Fig. 2. The smooth truncated quadratic compared to the squared L2-norm and Huber
cost (left), and the smooth truncated quadratic’s mathematical representation (right).

Fig. 3. Planes in 3D space are aligned via smoothing in the inverse depth image (black
represent original planes, red represents the smoothed versions). (Color figure online)

where I(x) and IT (x) are descriptors extracted around pixel x from keyframe
and current frame respectively. We use image intensity values (i.e. a descrip-
tor at pixel only), so that the disparity gradients do not need to be taken
into account during warping. Robustness is achieved by employing a smooth
truncated quadratic error [29] (visualized in Fig. 2) in the implementation of
‖ · ‖τMatch

.

2.2 Local Spatial Plane Regularizer

The smoothness constraint ESmooth(S) is based on a planar assumption often
found in stereo setups [13,23,24], which we adapt in this work to support
monocular video data. Surface si induces a linear extrapolation of inverse depth
via d̂i(x) = sTix. Plugging this into the homographic transformation yields

W (x, d̂i(x), ξt) = hom
(
RT

t

(
x − ttsTix

))
= hom

(
RT

t

(
xi − tt

nT
i

ri
xi

))
, (9)

where ni is the plane normal and ri is the point-plane distance to the camera
center. Hence we can identify si ∝ ni and therefore smoothing planes in inverse
depth parametrization also smoothes the alignment in 3D space (Fig. 3).

With λSmooth as balancing term, we define the spatial smoothness energy as

ESmooth(S) = λSmooth

∑

xi∈X

∑

xj∈Ni

‖sTixi − sTjxi‖τSmooth

= λSmooth

∑

xi∈X

∑

xj∈Ni

‖di − (dj + sTj(xi − xj))‖τSmooth
, (10)
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where Ni denotes the 4-neighborhood of xi. Thus, ESmooth penalizes devia-
tions between linearly extrapolated depth at xj and its actual depth. Although
some methods try to introduce robustness by appearance-based edge detection,
e.g. [30], we again simply employ the smooth version of the truncated quadratic
for ‖ · ‖τSmooth

. Hence, our method is inherently robust without arbitrary color
constraints. Unfortunately, (10) is not scale invariant, and scaling the baseline
tt scales the contribution of ESmooth. This is a potential issue only for the first
pair of frames (I, I1), since subsequent frames have their scale determined by
preceding frames. It is common usage to fix the initial scale by setting ‖t1‖ = 1,
but this is a suboptimal choice, since the same 3D scene geometry is regular-
ized differently depending on the initial baseline. A more sensible choice is to
fix e.g. the average depth (or inverse depth) to make ESmooth invariant w.r.t.
baselines. For our reconstruction we constrain the average inverse depth to one.

3 Optimization Strategy

In this section we detail our optimization strategy for the energy in (6). We
assume small changes between consecutive frames, as video data is used. There-
fore we use a similar approach as in standard differential tracking and optical
flow by locally linearizing the image intensities IT in the matching term E

(T )
Match.

The pseudocode of the proposed method is given in Algorithm1. The underly-
ing idea is to optimize the energy incrementally with increased complexity using
the scale-space pyramid representation and our restricted depth map update
which we detail below. The aim of doing this is two-fold: Firstly it substantially
reduces the number of unknowns in the main objective and therefore makes the
optimization much more efficient, and secondly it provides an additional level of
regularization within the algorithm and combines naturally with a scale-space
framework to avoid poor local minima. We discuss this constrained depth map
update in the following, and then introduce our optimization which exploits this
update to allow for truly simultaneous pose and depth estimation. Finally we
present a strategy for realtime performance on CPU.

3.1 Constrained Depth Map Updates

If we consider the current frame at time T and optimize ETotal (recall (6)) w.r.t.
ξT and S, then our algorithmic design choice is to restrict the update S − S∗ to
have low complexity in the following sense:

si = s∗
i +

C∑

c=1

Ic(xi)Δc, (11)

where Ic : X → {+1,−1} is an indicator function, splitting the set of pixels
into positive or negative parts. This means that a depth update at each pixel
xi is constrained to take one of 2C values. With increasing cardinality C, the
complexity of the depth map increases.

The optimization is performed greedily by adding a single component Δc at
a time. Notice, if ξT and S were to be optimized simultaneously, an equation
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Algorithm 1. Dense Incremental Planar Depth Estimation
Input: Keyframe I and images (It)

T
t=1.

Output: Final pose ξ and depth hypothesis S.
1: si ← [0 0 1]T and Λi ← 0 for all xi ∈ X .
2: compute resolution pyramid for the keyframe I.
3: ξ ← (I ∈ R

3×3, [0 0 0]T)
4: for each frame It do
5: compute resolution pyramid for the frame It.
6: for each pyramid level do
7: optimize ξ via lie algebra se(3) through Levenberg-Marquardt.
8: repeat
9: update ξ (and si ← si + Ic(xi)Δc if applicable).

10: introduce new component Δc.
11: estimate Ic(xi) via eigenvector of

∑
xi∈X ∇si∇T

si .
12: optimize ξ and Δc through Levenberg-Marquardt.
13: until improvement below εComplex or maximum components reached
14: end for
15: update precision Λi and depth s∗

i for temporal constraint.
16: end for

with 6 + 3|X | unknowns had to be solved inside a nonlinear least squares solver
(i.e. 6 parameters for an element in the lie algebra se(3) and 3 for the over-
parameterized depth values at each pixel). By using the constrained shape for
the updates and by using a greedy framework, we reduce the optimization to
6+3 variables at a time (i.e. se(3) and the 3 vector Δc), improving the execution
cost and robustness significantly.

Our methodology can be seen in analogy to multi-resolution pyramids which
spatially increase the quantization of the image plane, but in addition to spatial
resolution we also incrementally increase the quantization level of inverse depths.
Specifically, we exploit the representation of a pixel’s plane si as summed compo-
nents Δc, given in (11). These values correspond to the inverse depth resolution
which increases when new components are introduced.

This coarse-to-fine depth estimation is inspired by the human vision [31],
which perceives depth in relation to other areas in the scene, rather than absolute
values. Specifically, we perform the introduction of new distance values in a rela-
tional setting, splitting the data points based on their desired depth value direc-
tion. The advantages of this approach are three-fold: (1) we introduce depth
by enforcing a regularization across all pixels, (2) our splitting function sepa-
rates the image data into multiple planes, which naturally encode the image
hierarchically from coarse to fine, and (3) the incremental introduction of depth
enables fast computation whilst optimizing transformation and depth simulta-
neously. Moreover, we emphasize while our approach is greedy, it is not final
since corrections can be made through further splitting.

Our design choice to regularize the updates of S requires to determine the
binary function Ic : X → {+1,−1}. Essentially, if Δc is given, Ic(xi) corresponds
to the sign of the correlation ΔT

c∇siETotal between the depth update direction
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Δc and the gradient of the objective with respect to si. Since Δc is subject to
subsequent optimization, we determine an initial estimate Δ̃c as follows: given
the current gradients ∇siETotal (which we abbreviate to ∇si), it is sensible to
obtain Δ̃c as principal direction of the set {∇si}|X |

i=1, due to the symmetric range
in Ic:

Δ̃c ← argmax
u:‖u‖=1

{
uT

∑
xi∈X ∇si∇T

si u
}

. (12)

This can be obtained by eigenvalue or singular value decomposition of the 3 × 3
scatter matrix

∑
xi∈X ∇si∇T

si . Finally, the indicator function is given by

Ic(xi) =

{
1 if Δ̃T

c∇si ≥ 0
−1 otherwise

= sgn
(
Δ̃T

c∇si

)
. (13)

3.2 Simultaneous Pose and Depth Estimation

Let us assume we have an initial estimate for ξT and S available (e.g. ξT ← ξT−1

and S ← S∗, which is equivalent to C = 0 in (11)). Since our objective is an
instance of nonlinear least-squares problems we utilize the Levenberg-Marquardt
(LM) algorithm for robust and fast second order minimization. The robust ker-
nels ‖ · ‖τMatch

and ‖ · ‖τSmooth
are handled by an iteratively reweighed least

square (IRLS) strategy. Potentially enlarging the convergence basin via a lifted
representation of the robust kernel [32] is a topic for future work.

As outlined in Sect. 3.1 the complexity of depth map updates is increased
greedily, which means that new components Δc are successively introduced. We
start with C = 0 and iteratively increase C by adding new components. After
introduction of a new component Δc (and having an estimate for Ic), minimizing
ETotal with respect to Δc and ξT amounts to solving

argmin
ξT ,Δc

{ ∑

xi∈X
‖I(xi) − IT

(
W (xi, (si + Ic(xi)Δc)

T xi, ξT )
) ‖τMatch

+λSmooth

∑

xi∈X

∑

xj∈Ni

‖ (si + Ic(xi)Δc)
T xi − (sj + Ic(xj)Δc)

T xi‖τSmooth

+
∑

xi∈X
‖s∗

i − (si + Ic(xi)Δc) ‖Λi

}
(14)

(via LM), followed by the update si ← si + Ic(xi)Δc. We emphasize, as Δc is
shared between all pixels, this problem is unlikely to be rank deficient. Further
components Δc are introduced as long as ETotal is reduced sufficiently (i.e. an
improvement larger than εComplex). Notice, while our algorithm iteratively intro-
duces new components Δc, it optimizes pose and depth simultaneously. Analo-
gous to the resolution-based scale-space pyramid, the indicator function acts as
surrogate for increased resolution in depth.

For the first frame I1 matched with the keyframe I we need to enforce that
the average inverse depth is 1 (recall Sect. 2.2), which implies that

∑

xi

(si + Ic(xi)Δc)
T xi =

∑

xi

(
di + Ic(xi)ΔT

cxi

)
= 1 (15)
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must hold. If di already satisfies
∑

xi
di = 1, then the above reduces to

∑

xi

Ic(xi)xT
iΔc = 0. (16)

We chose a projected gradient approach by projecting the gradient w.r.t. Δc to
the feasible subspace defined by (16) inside the LM optimizer. Note that the
planes are initialized to si = (0, 0, 1)T in the beginning of the algorithm, and
by induction

∑
xi

sTi si =
∑

xi
di = 1 is always satisfied for the first frame. In

subsequent frames the constraint in (16) is not active.
Finally, to determine the precision matrices Λi ∈ R

3×3 needed for E
(T+1)
Temporal,

we employ the approximate Hessian via the Jacobian JMatch of E
(T )
Match:

(
H̃S,S H̃T

S,ξT

H̃S,ξT H̃ξT ,ξT

)
:=JT

MatchJMatch, (17)

and the 3×3-diagonal block of the Schur complement H̃S,S −H̃T
S,ξT

H̃−1
ξT ,ξT

H̃S,ξT

(denoted ΛMatch). We employ a forgetting factor λTemporal to reduce the over-
confident precision matrix, and update Λi ← λTemporalΛi + ΛMatch. Recall that
H̃ξT ,ξT ∈ R

6×6 and H̃S,ξT are very sparse.

3.3 CPU Computation in Realtime

Thus far, we present our energy for each pixel in the input video stream. While
this is generally useful for dense depth estimation, we may adopt our approach
to semi-dense computation to reduce running time. Similar to LSD-SLAM, we
can represent the image by its significant gradient values. By only computing
on these gradients, execution is significantly reduced. In fact, in comparison to
LSD-SLAM, we only need one additional LM iteration per split to introduce
depth on top of pose estimation. Finally, we can limit the number of introduced
depth components per resolution level to achieve constant running time.

4 Results

We perform our experiments on 13 video sequences in total, using 6 TUM [33]
image streams and 7 sequences recoded ourselves. The TUM dataset comprises
a number of video sequences with groundtruth pose, as recorded by a Vicon
system, and approximate depth through depth sensors [33]. We select a subset
of the handheld SLAM videos to measure system performance (i.e. fr1-desk,
fr1-desk2, fr1-floor, fr1-room, fr2-xyz and fr3-office). As we are interested in the
local aspect of SLAM (operating with single keyframe), we further divide these
into smaller sequences. Notice, as we perform keyframe-to-frame comparison, the
videos need to contain enough overlap with the reference image. Additionally,
we record 7 videos, using a GoPro Hero 3 with a wide angle lens at 30 fps.
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As a monocular approach, our method does not fix the scale. Hence, we
employ a scale corrected error (SCE) for translation:

e(tt, t̂t) =
∥∥∥∥tt

‖t̂t‖
‖tt‖ − t̂

∥∥∥∥ , (18)

where tt is the translational displacement of the pose ξt, and t̂t is the groundtruth
with respect to the keyframe (or initial frame). An error in rotation is indirectly
captured, as it effects the translation of future frames. We now introduce a
scale invariant measure to evaluate the depth’s completeness. Given true inverse
depth at the keyframe D̂ = (d̂i)

|X |
i=1 we define the completeness as the proportion

of depth values, satisfying a given accuracy ε:

c
(
D̂,D

)
= max

α

|X |∑

i

nα(d̂i, di)
|X | ,where nα(d̂i, di) =

{
1 if ‖ 1

d̂i
− α

di
‖ < ε

0 otherwise
. (19)

Parameter α represents scale and is found via grid search and refined through
gradient decent. In our work, ε = 0.05 which corresponds to ±5 cm.

4.1 Quantitative Evaluation on the TUM Dataset

We compare the proposed dense and semi-dense incremental planar system (DIP
and SIP respectively) to two versions of LSD-SLAM: (1) we carefully implement
a LSD-SLAM version that only uses a single keyframe (LSD-Key), and (2) the
original LSD-SLAM as provided by authors of [9], without loop closures or other
constraints (LSD-SLAM). We further ensure that mapping is guaranteed to run
after every tracking step in both LSD-SLAM systems. Finally, we include our
method as disjoint optimization for pose and depth separately and sequentially.
Table 1 shows the median SCE for different numbers of frames. The median is
calculated over all snippets taken from the individual TUM sequences.

The sequences fr1-desk and fr1-desk2 show an office environment with high
camera motion and little overlap towards keyframes. Here, the trajectories are
quickly lost when a single keyframe is used. SIP performs best at early stages,
while DIP is more suitable for longer tracking. The sequences fr1-floor and fr1-
room also have little keyframe overlap, but with slower motion. Here LSD-SLAM
performs competitively, as it benefits from keyframe generation.

Long-term tracks are achieved in fr2-xyz and fr3-office. We take a more
detailed look at the results of fr3-office. Figure 4 plots the median SCE for each
duration. We see that LSD-SLAM and DIP have similar performance early on,
but DIP performs better at later stages. Notice, as LSD-SLAM generates new
reference images, the baseline is typically small. In contrast DIP benefits from
larger baselines. LSD-Key loses track quickly, while SIP performs well in early
stages. The trajectory and inverse depth maps for the very first 300 frames are
shown in Fig. 5. Figure 6 plots the depth completeness. Here, DIP and SIP reach
a peak correctness with increasing baseline, after which they slightly degrades
as points are outside the current view, and smoothing takes over their energies.
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Table 1. Median Scale Corrected Error (in mm) for the compared methods after the
listed frame number for different TUM-Dataset sequences. (Note, different character-
istics of camera motion in each video lead to different length of keyframe overlaps.)

LSD-SLAM LSD-Key Disjoint SIP DIP

fr1-desk frame 5 34 34 33 25 27

frame 10 44 62 55 43 30

frame 30 106 130 119 135 46

fr1-desk2 frame 5 68 68 53 23 18

frame 10 103 115 87 41 44

frame 20 207 - 162 163 64

fr1-floor frame 5 30 30 36 30 34

frame 10 55 58 76 58 60

frame 15 85 88 111 79 86

fr1-room frame 5 13 13 19 10 16

frame 10 40 40 52 39 42

frame 25 9 79 117 - 53

fr2-xyz frame 10 15 15 10 9 9

frame 30 54 68 28 18 23

frame 100 121 88 45 45 47

fr3-office frame 10 29 30 41 32 33

frame 50 90 121 182 53 100

frame 150 206 - 265 - 123
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Fig. 4. Median SCE for videos of fr3-office. LSD-SLAM and DIP track long-term,
while SIP is more accurate early on. LSD-Key loses track quickly, and the disjoint
optimization (Disjoint) is consistently worse.

We remark, similar to many approaches based on gradient decent, our method
converges to local minima. However our method relies on graduated optimization
which aims to avoid getting trapped in bad minima by optimizing a smoother
energy with gradually increased complexity [34]. In contrast to LSD-SLAM, we
employ graduated optimization in depth perception as well as traditional scale-
space image pyramids leading to superior results. The indicator function is a
surrogate for the scale-space pyramid in depth. Finally, we note that the disjoint
version is consistently worse in virtually all experiments. The difference is the
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Fig. 5. Trajectories (left) and inverse depth maps (right) of LSD-SLAM, SIP and DIP
for the initial 300 images in fr3-office. LSD-SLAM is inaccurate due to scale drift. DIP
uses a single keyframe and hence does not drift as significantly. For depth, SIP and DIP
benefit from larger keyframe-to-frame baseline, resulting in qualitative better depth.
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Fig. 6. Depth completeness of LSD-Key, SIP and DIP for initial images in fr3-office. As
LSD-Key and SIP only produces depth for high gradient pixels, the results of DIP at
gradient only are also shown. Note, LSD-Key remains unchanged after poor tracking.

impact of graduated optimization. For Disjoint, changes in perceived depth are
not utilized for pose at the current frame. In contrast, joint optimization finds
pose and depth at the same time, yielding improved performance.

In terms of running time, LSD-SLAM and LSD-Key perform tracking and
mapping at 14 fps, while SIP performs twice as fast at 30 fps on CPU. DIP is
slower on CPU (2 fps), but its GPU implementation runs in realtime (30 fps).

4.2 Qualitative Results

We conclude the experimental with example frames of our 7 additional video
sequences (Fig. 7). Generally, LSD-SLAM smoothes well in the local neigh-
borhood, while SIP and DIP perform more consistent on the global inverse
depth hypothesis. We note, even with non-planar scenes our methods performs
well. We argue, that the local planar surface assumption is reasonable in most
environments, as was also witnessed by recent stereo systems, e.g. [13,23,24].
Nonetheless, in non-urban scenes, and in situations where the initial frontal
plane assumption is significantly wrong (recall initialization of si = (0, 0, 1)T),
the results are less favorable as seen in the last row of Fig. 7.
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Frame LSD-SLAM SIP DIP

Fig. 7. Inverse depth of LSD-SLAM, SIP and DIP for 7 qualitative video sequences
(far is blue, near is red). In most scenes, the local planar surface assumption holds
and our method performs well. In non-urban environments and where the initialization
with frontal planar surfaces does not hold, our method fails (bottom row). (Color figure
online)
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5 Conclusion

We introduced a carefully derived coarse-to-fine planar regularization strategy
that optimizes for both, pose and depth simultaneously from monocular streams.
Our framework is keyframe-based, and incrementally improves its depth hypoth-
esis at each frame as new data arrives. As semi-dense approach, the proposed
method runs in realtime on CPU, while realtime for the dense version can be
achieved on GPU. In our evaluation, we improved upon the front-end of LSD-
SLAM whilst increasing execution time by a factor of two.
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