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Abstract. Discrete energy minimization is widely-used in computer vision and
machine learning for problems such as MAP inference in graphical models. The
problem, in general, is notoriously intractable, and finding the global optimal so-
lution is known to be NP-hard. However, is it possible to approximate this prob-
lem with a reasonable ratio bound on the solution quality in polynomial time? We
show in this paper that the answer is no. Specifically, we show that general energy
minimization, even in the 2-label pairwise case, and planar energy minimization
with three or more labels are exp-APX-complete. This finding rules out the exis-
tence of any approximation algorithm with a sub-exponential approximation ratio
in the input size for these two problems, including constant factor approxima-
tions. Moreover, we collect and review the computational complexity of several
subclass problems and arrange them on a complexity scale consisting of three ma-
jor complexity classes – PO, APX, and exp-APX, corresponding to problems that
are solvable, approximable, and inapproximable in polynomial time. Problems in
the first two complexity classes can serve as alternative tractable formulations
to the inapproximable ones. This paper can help vision researchers to select an
appropriate model for an application or guide them in designing new algorithms.

Keywords: Energy minimization, complexity, NP-hard, APX, exp-APX, NPO,
WCSP, min-sum, MAP MRF, QPBO, planar graph

1 Introduction

Discrete energy minimization, also known as min-sum labeling [69] or weighted con-
straint satisfaction (WCSP)1 [25], is a popular model for many problems in computer
vision, machine learning, bioinformatics, and natural language processing. In particular,
the problem arises in maximum a posteriori (MAP) inference for Markov (conditional)
random fields (MRFs/CRFs) [43]. In the most frequently used pairwise case, the dis-
crete energy minimization problem (simply “energy minimization” hereafter) is defined
as

min
x∈LV

∑
u∈V

fu(xu) +
∑

(u,v)∈E

fuv(xu, xv), (1)

where xu is the label for node u in a graph G = (V, E). When the variables xu are binary
(Boolean): L = B = {0, 1}, the problem can be written as a quadratic polynomial in
x [11] and is known as quadratic pseudo-Boolean optimization (QPBO) [11].

1WCSP is a more general problem, considering a bounded plus operation. It is itself a special
case of valued CSP, where the objective takes values in a more general valuation set.
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In computer vision practice, energy minimization has found its place in semantic
segmentation [51], pose estimation [71], scene understanding [57], depth estimation
[44], optical flow estimation [70], image in-painting [59], and image denoising [8]. For
example, tree-structured models have been used to estimate pictorial structures such as
body skeletons or facial landmarks [71], multi-label Potts models have been used to
enforce a smoothing prior for semantic segmentation [51], and general pairwise models
have been used for optimal flow estimation [70]. However, it may not be appreciated
that the energy minimization formulations used to model these vision problems have
greatly varied degrees of tractability or computational complexity. For the three exam-
ples above, the first allows efficient exact inference, the second admits a constant factor
approximation, and the third has no quality guarantee on the approximation of the opti-
mum.

The study of complexity of energy minimization is a broad field. Energy minimiza-
tion problems are often intractable in practice except for special cases. While many
researchers analyze the time complexity of their algorithms (e.g., using big O notation),
it is beneficial to delve deeper to address the difficulty of the underlying problem. The
two most commonly known complexity classes are P (polynomial time) and NP (non-
deterministic polynomial time: all decision problems whose solutions can be verified
in polynomial time). However, these two complexity classes are only defined for de-
cision problems. The analogous complexity classes for optimization problems are PO
(P optimization) and NPO (NP optimization: all optimization problems whose solution
feasibility can be verified in polynomial time). Optimization problems form a superset
of decision problems, since any decision problem can be cast as an optimization over
the set {yes, no}, i.e., P ⊂ PO and NP ⊂ NPO. The NP-hardness of an optimization
problem means it is at least as hard as (under Turing reduction) the hardest decision
problem in the class NP. If a problem is NP-hard, then it is not in PO assuming P 6= NP.

Although optimal solutions for problems in NPO, but not in PO, are intractable, it
is sometimes possible to guarantee that a good solution (i.e., one that is worse than the
optimal by no more than a given factor) can be found in polynomial time. These prob-
lems can therefore be further classified into class APX (constant factor approximation)
and class exp-APX (inapproximable) with increasing complexity (Figure 1). We can
arrange energy minimization problems on this more detailed complexity scale, origi-
nally established in [4], to provide vision researchers a new viewpoint for complexity
classification, with a focus on NP-hard optimization problems.

In this paper, we make three core contributions, as explained in the next three para-
graphs. First, we prove the inapproximability result of QPBO and general energy mini-
mization. Second, we show that the same inapproximability result holds when restrict-
ing to planar graphs with three or more labels. In the proof, we propose a novel micro-
graph structure-based reduction that can be used for algorithmic design as well. Finally,
we present a unified framework and an overview of vision-related special cases where
the energy minimization problem can be solved in polynomial time or approximated
with a constant, logarithmic, or polynomial factor.

Binary and multi-label case (Section 3). It is known that QPBO (2-label case) and
the general energy minimization problem (multi-label case) are NP-hard [12], because
they generalize such classical NP-hard optimization problems on graphs as vertex pack-
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Complexity Class
Label Space,

Interaction Type,

Graph Structure

NP-hard

NPO

APX

(Bounded 

Approximation)

exp-APX

(Unbounded 

Approximation)

PO

(Global 

Optimum)

Multi-label Potts

Logic MRF

Convex Interaction

Binary Outerplanar

Submodular

3-label Planar

Binary or Multi-label

Bounded Treewidth

Fig. 1: Discrete energy minimization problems aligned on a complexity axis. Red/boldface indi-
cates new results proven in this paper. This axis defines a partial ordering, since problems within a
complexity class are not ranked. Some problems discussed in this paper are omitted for simplicity.

ing (maximum independent set) and the minimum and maximum cut problems [27]. In
this paper, we show a stronger conclusion. We prove that QPBO as well as general
energy minimization are complete (being the hardest problems) in the class exp-APX.
Assuming P 6= NP, this implies that a polynomial time method cannot have a guaran-
tee of finding an approximation within a constant factor of the optimal, and in fact, the
only possible factor in polynomial time is exponential in the input size. In practice, this
means that a solution may be essentially arbitrarily bad.

Planar three or more label case (Section 4). Planar graphs form the underlying
graph structure for many computer vision and image processing tasks. It is known that
efficient exact algorithms exist for some special cases of planar 2-label energy mini-
mization problems [55]. In this paper, we show that for the case of three or more labels,
planar energy minimization is exp-APX-complete, which means these problems are as
hard as general energy minimization. It is unknown that whether a constant ratio ap-
proximation exists for planar 2-label problems in general.

Subclass problems (Section 5). Special cases for some energy minimization algo-
rithms relevant to computer vision are known to be tractable. However, detailed com-
plexity analysis of these algorithms is patchy and spread across numerous papers. In
Section 5, we classify the complexity of these subclass problems and illustrate some of
their connections. Such an analysis can help computer vision researchers become ac-
quainted with existing complexity results relevant to energy minimization and can aid
in selecting an appropriate model for an application or in designing new algorithms.
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1.1 Related Work

Much of the work on complexity in computer vision has focused on experimental or
empirical comparison of inference methods, including influential studies on choos-
ing the best optimization techniques for specific classes of energy minimization prob-
lems [62, 26] and the PASCAL Probabilistic Inference Challenge, which focused on the
more general context of inference in graphical models [1]. In contrast, our work focuses
on theoretical computational complexity, rather than experimental analysis.

On the theoretical side, the NP-hardness of certain energy minimization problems
is well studied. It has been shown that 2-label energy minimization is, in general, NP-
hard, but it can be in PO if it is submodular [30] or outerplanar [55]. For multi-label
problems, the NP-hardness was proven by reduction from the NP-hard multi-way cut
problem [13]. These results, however, say nothing about the complexity of approximat-
ing the global optimum for the intractable cases. The complexity involving approxi-
mation has been studied for classical combinatorial problems, such as MAX-CUT and
MAX-2SAT, which are known to be APX-complete [46]. QPBO generalizes such prob-
lems and is therefore APX-hard. This leaves a possibility that QPBO may be in APX,
i.e., approximable within a constant factor.

Energy minimization is often used to solve MAP inference for undirected graphical
models. In contrast to scarce results for energy minimization and undirected graphical
models, researchers have more extensively studied the computational complexity of ap-
proximating the MAP solution for Bayesian networks, also known as directed graphical
models [42]. Abdelbar and Hedetniemi first proved the NP-hardness for approximating
the MAP assignment of directed graphical models in the value of probability, i.e., find-
ing x such that

p(x∗)

p(x)
≤ r(n) (2)

with a constant or polynomial ratio r(n) ≥ 1 is NP-hard and showing that this prob-
lem is poly-APX-hard [2]. The probability approximation ratio is closest to the en-
ergy ratio used in our work, but other approximation measures have also been studied.
Kwisthout showed the NP-hardness for approximating MAPs with the measure of ad-
ditive value-, structure-, and rank-approximation [40, 41, 42]. He also investigated the
hardness of expectation-approximation of MAP and found that no randomized algo-
rithm can expectation-approximate MAP in polynomial time with a bounded margin of
error unless NP ⊆ BPP, an assumption that is highly unlikely to be true [42].

Unfortunately, the complexity results for directed models do not readily transfer to
undirected models and vice versa. In directed and undirected models, the graphs repre-
sent different conditional independence relations, thus the underlying family of proba-
bility distributions encoded by these two models is distinct, as detailed in Appendix B.
However, one can ask similar questions on the hardness of undirected models in terms
of various approximation measures. In this work, we answer two questions, “How hard
is it to approximate the MAP inference in the ratio of energy (log probability) and the ra-
tio of probability?” The complexity of structure-, rank-, and expectation-approximation
remain open questions for energy minimization.
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2 Definitions and Notation

There are at least two different sets of definitions of what is considered an NP optimiza-
tion problem [45, 4]. Here, we follow the notation of Ausiello et al [4] and restate the
definitions needed for us to state and prove our theorems in Sections 3 and 4 with our
explanation of their relevance to our proofs.

Definition 2.1 (Optimization Problem, [4] Def. 1.16). An optimization problem P is
characterized by a quadruple (I,S,m, goal) where

1. I is the set of instances of P .
2. S is a function that associates to any input instance x ∈ I the set of feasible

solutions of x.
3. m is the measure function, defined for pairs (x, y) such that x ∈ I and y ∈ S(x).
For every such pair (x, y), m(x, y) provides a positive integer.

4. goal ∈ {min,max}.

Notice the assumption that the cost is positive, and, in particular, it cannot be zero.

Definition 2.2 (Class NPO, [4] Def 1.17). An optimization problemP = (I,S,m, goal)
belongs to the class of NP optimization (NPO) problems if the following hold:

1. The set of instances I is recognizable in polynomial time.
2. There exists a polynomial q such that given an instance x ∈ I, for any y ∈ S(x),
|y| < q(x) and, besides, for any y such that |y| < q(x), it is decidable in polynomial
time whether y ∈ S(x).

3. The measure function m is computable in polynomial time.

Definition 2.3 (Class PO, [4] Def 1.18). An optimization problem P belongs to the
class of PO if it is in NPO and there exists a polynomial-time algorithm that, for any
instance x ∈ I, returns an optimal solution y ∈ S∗(x), together with its value m∗(x).

For intractable problems, it may be acceptable to seek an approximate solution that
is sufficiently close to optimal.

Definition 2.4 (Approximation Algorithm, [4] Def. 3.1). Given an optimization prob-
lem P = (I,S,m, goal) an algorithm A is an approximation algorithm for P if, for
any given instance x ∈ I, it returns an approximate solution, that is a feasible solution
A(x) ∈ S(x).

Definition 2.5 (Performance Ratio, [4], Def. 3.6). Given an optimization problem P ,
for any instance x of P and for any feasible solution y ∈ S(x), the performance ratio,
approximation ratio or approximation factor of y with respect to x is defined as

R(x, y) = max
{m(x, y)

m∗(x)
,
m∗(x)

m(x, y)

}
, (3)

where m∗(x) is the measure of the optimal solution for the instance x.

Since m∗(x) is a positive integer, the performance ratio is well-defined. It is a ra-
tional number in [1,∞). Notice that from this definition, it follows that if finding a
feasible solution, e.g. y ∈ S(x), is an NP-hard decision problem, then there exists
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no polynomial-time approximation algorithm for P , irrespective of the kind of perfor-
mance evaluation that one could possibly mean.

Definition 2.6 (r(n)-approximation, [4], Def. 8.1). Given an optimization problem P
in NPO, an approximation algorithm A for P , and a function r : N → (1,∞), we
say that A is an r(n)-approximate algorithm for P if, for any instance x of P such that
S(x) 6= ∅, the performance ratio of the feasible solutionA(x) with respect to x verifies
the following inequality:

R(x,A(x)) ≤ r(|x|). (4)

Definition 2.7 (F -APX, [4], Def. 8.2). Given a class of functions F , F -APX is the class
of all NPO problems P such that, for some function r ∈ F , there exists a polynomial-
time r(n)-approximate algorithm for P .

The class of constant functions for F yields the complexity class APX. Together
with logarithmic, polynomial, and exponential functions applied in Definition 2.7, the
following complexity axis is established:

PO ⊆ APX ⊆ log-APX ⊆ poly-APX ⊆ exp-APX ⊆ NPO.

Since the measurem needs to be computable in polynomial time for NPO problems,
the largest measure and thus the largest performance ratio is an exponential function.
But exp-APX is not equal to NPO (assuming P 6= NP) because NPO contains prob-
lems whose feasible solutions cannot be found in polynomial time. For an energy min-
imization problem, any label assignment is a feasible solution, implying that all energy
minimization problems are in exp-APX.

The standard approach for proofs in complexity theory is to perform a reduction
from a known NP-complete problem. Unfortunately, the most common polynomial-
time reductions ignore the quality of the solution in the approximated case. For ex-
ample, it is shown that any energy minimization problem can be reduced to a factor 2
approximable Potts model [48], however the reduction is not approximation preserving
and is unable to show the hardness of general energy minimization in terms of approx-
imation. Therefore, it is necessary to use an approximation preserving (AP) reduction
to classify NPO problems that are not in PO, for which only the approximation algo-
rithms are tractable. AP-preserving reductions preserve the approximation ratio in a
linear fashion, and thus preserve the membership in these complexity classes. Formally,

Definition 2.8 (AP-reduction, [4] Def. 8.3). Let P1 and P2 be two problems in NPO.
P1 is said to be AP-reducible to P2, in symbols P1 ≤AP P2, if two functions π and σ
and a positive constant α exist such that 2:

1. For any instance x ∈ I1, π(x) ∈ I2.
2. For any instance x ∈ I1, if S1(x) 6= ∅ then S2(π(x)) 6= ∅.
3. For any instance x ∈ I1 and for any y ∈ S2(π(x)), σ(x, y) ∈ S1(x).
4. π and σ are computable by algorithms whose running time is polynomial.

2The complete definition contains a rational r for the the two mappings (π and σ) and it is
omitted here for simplicity.
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5. For any instance x ∈ I1, for any rational r > 1, and for any y ∈ S2(π(x)),

R2(π(x), y) ≤ r implies (5)
R1(x, σ(x, y)) ≤ 1 + α(r − 1). (6)

AP-reduction is the formal definition of the term ‘as hard as’ used in this paper
unless otherwise specified. It defines a partial order among optimization problems. With
respect to this relationship, we can formally define the subclass containing the hardest
problems in a complexity class:

Definition 2.9 (C-hard and C-complete, [4] Def. 8.5). Given a class C of NPO problems,
a problem P is C-hard if, for any P ′ ∈ C, P ′ ≤AP P . A C-hard problem is C-complete if
it belongs to C.

Intuitively, a complexity class C specifies the upper bound on the hardness of the
problems within, C-hard specifies the lower bound, and C-complete exactly specifies
the hardness.

3 Inapproximability for the General Case

In this section, we show that QPBO and general energy minimization are inapprox-
imable by proving they are exp-APX-complete. As previously mentioned, it is already
known that these problems are NP-hard [12], but it was previously unknown whether
useful approximation guarantees were possible in the general case. The formal state-
ment of QPBO as an optimization problem is as follows:

Problem 1. QPBO
INSTANCE: A pseudo-Boolean function f : BV → N :

f(x) =
∑
v∈V

fu(xu) +
∑

u,v∈V
fuv(xu, xv), (7)

given by the collection of unary terms fu and pairwise terms fuv .
SOLUTION: Assignment of variables x ∈ BV .
MEASURE: min f(x) > 0.

Theorem 3.1. QPBO is exp-APX-complete.

Proof Sketch. (Full proof in Appendix A).
1. We observe that W3SAT-triv is known to be exp-APX-complete [4]. W3SAT-triv
is a 3-SAT problem with weights on the variables and an artificial, trivial solution.

2. Each 3-clause in the conjunctive normal form can be represented as a polynomial
consisting of three binary variables. Together with representing the weights with
the unary terms, we arrive at a cubic Boolean minimization problem.

3. We use the method of [24] to transform the cubic Boolean problem into a quadratic
one, with polynomially many additional variables, which is an instance of QPBO.

4. Together with an inverse mapping σ that we define, the above transformation
defines an AP-reduction from W3SAT-triv to QPBO, i.e. W3SAT-triv ≤AP QPBO.
This proves that QPBO is exp-APX-hard.
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5. We observe that all energy minimization problems are in exp-APX and thereby
conclude that QPBO is exp-APX-complete.
This inapproximability result can be generalized to more than two labels.

Corollary 3.2. k-label energy minimization is exp-APX-complete for k ≥ 2.

Proof Sketch. (Full proof in Appendix A). This theorem is proved by showing QPBO
≤AP k-label energy minimization for k ≥ 2.

We show in Corollary B.1 the inapproximability in energy (log probability) transfer
to probability in Equation (2) as well.

Taken together, this theorem and its corollaries form a very strong inapproximabil-
ity result for general energy minimization 3. They imply not only NP-hardness, but also
that there is no algorithm that can approximate general energy minimization with two
or more labels with an approximation ratio better than some exponential function in
the input size. In other words, any approximation algorithm of the general energy mini-
mization problem can perform arbitrarily badly, and it would be pointless to try to prove
a bound on the approximation ratio for existing approximation algorithms for the gen-
eral case. While this conclusion is disappointing, these results serve as a clarification of
grounds and guidance for model selection and algorithm design. Instead of counting on
an oracle that solves the energy minimization problem, researchers should put efforts
into selecting the proper formulation, trading off expressiveness for tractability.

4 Inapproximability for the Planar Case

Efficient algorithms for energy minimization have been found for special cases of 2-
label planar graphs. Examples include planar 2-label problems without unary terms and
outerplanar 2-label problems (i.e., the graph structure remains planar after connecting
to a common node) [55]. Grid structures over image pixels naturally give rise to planar
graphs in computer vision. Given their frequency of use in this domain, it is natural to
consider the complexity of more general cases involving planar graphs. Figure 2 visual-
izes the current state of knowledge of the complexity of energy minimization problems
on planar graphs. In this section, we prove that for the case of planar graphs with three
or more labels, energy minimization is exp-APX-complete. This result is important
because it significantly reduces the space of potentially efficient algorithms on planar

Planar 2-label

Special Cases

PO

Planar 2-label

The General Case

APX-hard

Planar 3 and More Labels

The General Case

exp-APX-complete (This Paper)

Fig. 2: Complexity for planar energy minimization problems. The “general case” implies no re-
strictions on the pairwise interaction type. This paper shows that the third category of problems
is not efficiently approximable.

3These results automatically generalize to higher order cases as they subsume the pairwise
cases discussed here.
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graphs. The existence of constant ratio approximation for planar 2-label problems in
general remains an open question 4.

Theorem 4.1. Planar 3-label energy minimization is exp-APX-complete.

Proof Sketch. (Full proof in Appendix A).
1. We construct elementary gadgets to reduce any 3-label energy minimization prob-
lem to a planar one with polynomially many auxiliary nodes.

2. Together with an inverse mapping σ that we define, the above construction de-
fines an AP-reduction, i.e., 3-label energy minimization ≤AP planar 3-label energy
minimization.

3. Since 3-label energy minimization is exp-APX-complete (Corollary 3.2) and all
energy minimization problems are in exp-APX, we thereby conclude that planar
3-label energy minimization is exp-APX-complete.

Corollary 4.2. Planar k-label energy minimization is exp-APX-complete, for k ≥ 3.

Proof Sketch. (Full proof in Appendix A). This theorem is proved by showing planar
3-label energy minimization ≤AP planar k-label energy minimization, for k ≥ 3.

These theorems show that the restricted case of planar graphs with 3 or more labels
is as hard as general case for energy minimization problems with the same inapprox-
imable implications discussed in Section 3.

The most novel and useful aspect of the proof of Theorem 4.1 is the planar reduction
in Step 1. The reduction creates an equivalent planar representation to any non-planar
3-label graph. That is, the graphs share the same optimal value. The reduction applies
elementary constructions or “gadgets” to uncross two intersecting edges. This process
is repeated until all intersecting edges are uncrossed. Similar elementary constructions
were used to study the complexity of the linear programming formulation of energy
minimization problems [49, 48]. Our novel gadgets have three key properties at the
same time: 1) they are able to uncross intersecting edges, 2) they work on non-relaxed
problems, i.e., all indicator variables (or pseudomarginals to be formal) are integral; and
3) they can be applied repeatedly to build an AP-reduction.

The two gadgets used in our reduction are illustrated in Figure 3. A 3-label node
can be encoded as a collection of 3 indicator variables with a one-hot constraint. In
the figure, a solid colored circle denotes a 3-label node, and a solid colored rectangle
denotes the equivalent node expressed with indicator variables (white circles). For ex-
ample, in Figure 3, a = 1 corresponds to the blue node taking the first label value. The
pairwise potentials (edges on the left part of the figures) can be viewed as edge costs
between the indicator variables (black lines on the right), e.g., fuv(3, 2) is placed onto
the edge between indicator c and e and is counted into the overall measure if and only
if c = e = 1. In our gadgets, drawn edges represent zero cost while omitted edges
represent positive infinity5. While the set of feasible solutions remains the same, the

4The planar 2-label problem in general is APX-hard, since it subsumes the APX problem
planar vertex cover [7].

5A very large number will also serve the same purpose, e.g., take the sum of the absolute
value of all energy terms and add 1. Therefore, we are not expanding the set of allowed energy
terms to include ∞.
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f g

a b c

d e

SPLIT UNCROSSCOPY

Fig. 3: Gadgets to represent a 3-label variable as two 2-label variables (SPLIT) and to copy the
values of two diagonal pairs of 2-label variables without edge crossing (UNCROSSCOPY).

gadget encourages certain labeling relationships, which, if not satisfied, cause the over-
all measure to be infinity. Therefore, the encouraged relationships must be satisfied by
any optimal solution. The two gadgets serve different purposes:

SPLIT A 3-label node (blue) is split into two 2-label nodes (green). The shaded
circle represents a label with a positive infinite unary cost and thus creates a simulated
2-label node. The encouraged relationships are
• a = 1⇔ d = 1 and f = 1.
• b = 1⇔ g = 1.
• c = 1⇔ e = 1 and f = 1.

Thus (d, f) encodes a, (d, g) and (e, g) both encode b and (e, f) encodes c.
UNCROSSCOPY The values of two 2-label nodes are encouraged to be the same as

their diagonal counterparts respectively (red to red, green to green) without crossing
with each other. The orange nodes are intermediate nodes that pass on the values. All
types of lines represent the same edge cost, which is 0. The color differences visualize
the verification for each of the 4 possible states of two 2-label nodes. For example, the
cyan lines verify the case where the top-left (green) node takes the values (1, 0) and the
top-right (red) node takes the value (0, 1). It is clear that the encouraged solution is for
the bottom-left (red) node and the bottom-right (green) node to take the value (0, 1) and
(1, 0) respectively.

These two gadgets can be used to uncross the intersecting edges of two pairs of 3-
label nodes (Figure 4, left). For a crossing edge (xu, xv), first a new 3-label node xv′ is
introduced preserving the same arbitrary interaction (red line) as before (Figure 4, mid-
dle). Then, the crossing edges (enclosed in the dotted circle) are uncrossed by applying
SPLIT and UNCROSSCOPY four times (Figure 4, right). Without loss of generality, we

Fig. 4: Planar reduction for 3-label problems
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can assume that no more than two edges intersect at a common point except at their
endpoints. This process can be applied repeatedly at each edge crossing until there are
no edge crossings left in the graph [49].

5 Complexity of Subclass Problems

In this section, we classify some of the special cases of energy minimization according
to our complexity axis (Figure 1). This classification can be viewed as a reinterpretation
of existing results from the literature into a unified framework.

5.1 Class PO (Global Optimum)

Polynomial time solvability may be achieved by considering two principal restrictions:
those restricting the structure of the problem, i.e., the graph G, and those restricting the
type of allowed interactions, i.e., functions fuv .

Structure Restrictions. When G is a chain, energy minimization reduces to find-
ing a shortest path in the trellis graph, which can be solved using a classical dynamic
programming (DP) method known as the Viterbi algorithm [20]. The same DP principle
applies to graphs of bounded treewidth. Fixing all variables in a separator set decouples
the problem into independent optimization problems. For treewidth 1, the separators
are just individual vertices, and the problem is solved by a variant of DP [47, 54]. For
larger treewidths, the respective optimization procedure is known as junction tree de-
composition [43]. A loop is a simple example of a treewidth 2 problem. However, for a
treewidth k problem, the time complexity is exponential in k [43]. When G is an outer-
planar graph, the problem can be solved by the method of [55], which reduces it to a
planar Ising model, for which efficient algorithms exist [60].

Interaction Restrictions. Submodularity is a restriction closely related to problems
solvable by minimum cut. A quadratic pseudo-Boolean function f is submodular iff
its quadratic terms are non-positive. It is then known to be equivalent with finding a
minimum cut in a corresponding network [21]. Another way to state this condition
for QPBO is ∀(u, v) ∈ E , fuv(0, 1) + fuv(1, 0) ≥ fuv(0, 0) + fuv(1, 1). However,
submodularity is more general. It extends to higher-order and multi-label problems.
Submodularity is considered a discrete analog of convexity. Just as convex functions
are relatively easy to optimize, general submodular function minimization can be solved
in strongly polynomial time [56]. Kolmogorov and Zabin introduced submodularity in
computer vision and showed that binary 2nd order and 3rd order submodular problems
can be always reduced to minimum cut, which is much more efficient than general
submodular function minimization [34]. Živný et al. and Ramalingam et al. give more
results on functions reducible to minimum cut [68, 50]. For QPBO on an unrestricted
graph structure, the following dichotomy result has been proven by Cohen et al. [16]:
either the problem is submodular and thus in PO or it is NP-hard (i.e., submodular
problems are the only ones that are tractable in this case).

For multi-label problems Ishikawa proposed a reduction to minimum cut for prob-
lems with convex interactions, i.e., where fuv(xu, xv) = guv(xu − xv) and guv is
convex and symmetric [23]. It is worth noting that when the unary terms are convex as
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well, the problem can be solved even more efficiently [22, 31]. The same reduction [23]
remains correct for a more general class of submodular multi-label problems. In mod-
ern terminology, component-wise minimum x∧y and component-wise maximum x∨y
of complete labelings x, y for all nodes are introduced (x, y ∈ LV ). These operations
depend on the order of labels and, in turn, define a lattice on the set of labelings. The
function f is called submodular on the lattice if f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y)
for all x, y [65]. In the pairwise case, the condition can be simplified to the form
of submodularity common in computer vision [50]: fuv(i, j + 1) + fuv(i + 1, j) ≥
fuv(i, j) + fuv(i + 1, j + 1). In particular, it is easy to see that a convex fuv satis-
fies it [23]. Kolmogorov [32] and Arora et al. [3] proposed maxflow-like algorithms
for higher order submodular energy minimization. Schlesinger proposed an algorithm
to find a reordering in which the problem is submodular if one exists [53]. However,
unlike in the binary case, solvable multi-label problems are more diverse. A variety of
problems are generalizations of submodularity and are in PO, including symmetric tour-
nament pair, submodularity on arbitrary trees, submodularity on arbitrary lattices, skew
bisubmodularity, and bisubmodularity on arbitrary domains (see references in [64]).
Thapper and Živný [63] and Kolmogorov [33] characterized these tractable classes and
proved a similar dichotomy result: a problem of unrestricted structure is either solvable
by LP-relaxation (and thus in PO) or it is NP-hard. It appears that LP relaxation is the
most powerful and general solving technique [72].

Mixed Restrictions. In comparison, results with mixed structure and interaction
restrictions are rare. One example is a planar Ising model without unary terms [60].
Since there is a restriction on structure (planarity) and unary terms, it does not fall into
any of the classes described above. Another example is the restriction to supermodular
functions on a bipartite graph, solvable by [53] or by LP relaxation, but not falling under
the characterization [64] because of the graph restriction.

Algorithmic Applications. The aforementioned tractable formulations in PO can
be used to solve or approximate harder problems. Trees, cycles and planar problems are
used in dual decomposition methods [35, 36, 9]. Binary submodular problems are used
for finding an optimized crossover of two-candidate multi-label solutions. An example
of this technique, the expansion move algorithm, achieves a constant approximation
ratio for the Potts model [13]. Extended dynamic programming can be used to solve
restricted segmentation problems [18] and as move-making subroutine [67]. LP relax-
ation also provides approximation guarantees for many problems [5, 15, 28, 37], placing
them in the APX or poly-APX class.

5.2 Class APX and Class log-APX (Bounded Approximation)

Problems that have bounded approximation in polynomial time usually have certain
restriction on the interaction type. The Potts model may be the simplest and most com-
mon way to enforce the smoothness of the labeling. Each pairwise interaction depends
on whether the neighboring labellings are the same, i.e. fuv(xu, xv) = cuvδ(xu, xv).
Boykov et al. showed a reduction to this problem from the NP-hard multiway cut [13],
also known to be APX-complete [4, 17]. They also proved that their constructed alpha-
expansion algorithm is a 2-approximate algorithm. These results prove that the Potts
model is in APX but not in PO. However, their reduction from multiway cut is not
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an AP-reduction, as it violates the third condition of AP-reducibility. Therefore, it is
still an open problem whether the Potts model is APX-complete. Boykov et al. also
showed that their algorithm can approximate the more general problem of metric la-
beling [13]. The energy is called metric if, for an arbitrary, finite label space L, the
pairwise interaction satisfies a) fuv(α, β) = 0, b) fuv(α, β) = fuv(β, α) ≥ 0, and c)
fuv(α, β) ≤ fuv(β, γ) + fuv(β, γ), for any labels α, β, γ ∈ L and any uv ∈ E . Al-
though their approximation algorithm has a bound on the performance ratio, the bound
depends on the ratio of some pairwise terms, a number that can grow exponentially
large. For metric labeling with k labels, Kleinberg et al. proposed anO(log k log log k)-
approximation algorithm. This bound was further improved to O(log k) by Chekuri
et al. [14], making metric labeling a problem in log-APX 6.

We have seen that a problem with convex pairwise interactions is in PO. An interest-
ing variant is its truncated counterpart, i.e., fuv(xu, xv) = wuv min{d(xu − xv),M},
where wuv is a non-negative weight, d is a convex symmetric function to define the
distance between two labels, and M is the truncating constant [66]. This problem is
NP-hard [66], but Kumar et al. [39] have proposed an algorithm that yields bounded
approximations with a factor of 2 +

√
2 for linear distance functions and a factor of

O(
√
M) for quadratic distance functions7. This bound is analyzed for more general

distance functions by Kumar [38].
Another APX problem with implicit restrictions on the interaction type is logic

MRF [6]. It is a powerful higher order model able to encode arbitrary logical relations
of Boolean variables. It has energy function f(x) =

∑n
i wiCi, where each Ci is a

disjunctive clause involving a subset of Boolean variables x, and Ci = 1 if it is satisfied
and 0 otherwise. Each clause Ci is assigned a non-negative weight wi. The goal is to
find an assignment of x to maximize f(x). As disjunctive clauses can be converted into
polynomials, this is essentially a pseudo-Boolean optimization problem. However, this
is a special case of general 2-label energy minimization, as its polynomial basis spans
a subspace of the basis of the latter. Bach et al. [6] proved that logic MRF is in APX by
showing that it is a special case of MAX-SAT with non-negative weights.

6 Discussion

The algorithmic implications of our inapproximability have been discussed above. Here,
we focus on the discussion of practical implications. The existence of an approxima-
tion guarantee indicates a practically relevant class of problems where one may expect
reasonable performance. In structural learning for example, it is acceptable to have a
constant factor approximation for the inference subroutine when efficient exact algo-
rithms are not available. Finley and Joachims proved that this constant factor approx-
imation guarantee yields a multiplicative bound on the learning objective, providing a
relative guarantee for the quality of the learned parameters [19]. An optimality guar-
antee is important, because the inference subroutine is repeatedly called, and even a

6An O(log k)-approximation implies an O(log |x|)-approximation (see Corollary C.1).
7In these truncated convex problems, the ratio bound is defined for the pairwise part of the

energy (1). The approximation ratio in accordance to our definition is obtained assuming the
unary terms are non-negative.
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single poor approximation, which returns a not-so-bad worst violator, will lead to the
early termination of the structural learning algorithm.

However, despite having no approximation ratio guarantee, algorithms such as the
extended roof duality algorithm for QPBO [52] are still widely used. This gap between
theory and application applies not only to our results but to all other complexity results
as well. We list several key reasons for the potential lack of correspondence between
theoretical complexity guarantees and practical performance.

Complexity results address the worst case scenario. Our inapproximability result
guarantees that for any polynomial time algorithm, there exists an input instance for
which the algorithm will produce a very poor approximation. However, applications
often do not encounter the worst case. Such is the case with the simplex algorithm,
whose worst case complexity is exponential, yet it is widely used in practice.

Objective function is not the final evaluation criterion. In many image processing
tasks, the final evaluation criterion is the number of pixels correctly labeled. The relation
between the energy value and the accuracy is implicit. In many cases, a local optimum
is good enough to produce a high labeling accuracy and a visually appealing labeling.

Other forms of optimality guarantee or indicator exist. Approximation measures
in the distance of solutions or in the expectation of the objective value are likely to be
prohibitive for energy minimization, as they are for Bayesian networks [40, 41, 42].
On the other hand, a family of energy minimization algorithms has the property of be-
ing persistent or partial optimal, meaning a subset of nodes have consistent labeling
with the global optimal one [10, 11]. Rather than being an optimality guarantee, persis-
tency is an optimality indicator. In the worst case, the set of persistent labelings could
be empty, yet the percentage of persistent labelings over the all the nodes gives us a
notion of the algorithm’s performance on this particular input instance. Persistency is
also useful in reducing the size of the search space [29, 58]. Similarly, the per-instance
integrality gap of duality based methods is another form of optimality indicator and can
be exponentially large for problems in general [37, 61].

7 Conclusion

In this paper, we have shown inapproximablity results for energy minimization in the
general case and planar 3-label case. In addition, we present a unified overview of
the complexity of existing energy minimization problems by arranging them in a fine-
grained complexity scale. These altogether set up a new viewpoint for interpreting and
classifying the complexity of optimization problems for the computer vision commu-
nity. In the future, it will be interesting to consider the open questions of the complexity
of structure-, rank-, and expectation-approximation for energy minimization.
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[68] Živný, S., Cohen, D.A., Jeavons, P.G.: The expressive power of binary submodular func-
tions. Discrete Applied Mathematics 157(15), 3347 – 3358 (2009)



18 Mengtian Li, Alexander Shekhovtsov and Daniel Huber

[69] Werner, T.: A linear programming approach to max-sum problem: A review. PAMI 29(7),
1165–1179 (July 2007)

[70] Xu, L., Jia, J., Matsushita, Y.: Motion detail preserving optical flow estimation. PAMI 34(9),
1744–1757 (2012)

[71] Yang, Y., Ramanan, D.: Articulated pose estimation with flexible mixtures-of-parts. In:
CVPR. pp. 1385–1392 (2011)
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A Formal Proofs

Note for all proofs in this section, we assign integer values to Boolean functions: 0 for
False and 1 for True.

A.1 General Case

Theorem 3.1. QPBO is exp-APX-complete.

Proof. We reduce from the following problem.

Problem 1 ([4], Section 8.3.2). W3SAT-triv
INSTANCE: Boolean CNF formula F with variables x1, · · · , xn and each clause
assuming exactly 3 variables; non-negative integer weights w1, · · · , wn.

SOLUTION: Truth assignment τ to the variables that either satisfies F or assigns the
trivial, all-true assignment.

MEASURE: min
∑n

i=1 wiτ(xi).

W3SAT-triv is known to be exp-APX-complete [4]. We use an AP-reduction from
W3SAT-triv to prove the same completeness result for QPBO. The optimal value of
W3SAT-triv is upper bounded by M :=

∑
i wi because the all-true assignment is fea-

sible. The objective weight is represented in QPBO as unary terms fi(xi) = wixi. For
every Boolean clause C(xi, xj , xk) ∈ F we construct a triple-wise term

δijk(xi, xj , xk) = M(1− C(xi, xj , xk)). (1)

This term takes the large value M iff C is not satisfied and 0 otherwise. Further, the
Boolean clause C(xi, xj , xk) can be represented uniquely as a multi-linear cubic poly-
nomial. For example, a clause x1 ∨ x̄2 ∨ x̄3 can be represented as

1− (1− x1)x2x3 = x1x2x3 − x2x3 + 1. (2)

Then we obtain similar representation with a single third order term and a second order
multi-linear polynomial for δijk:

δijk = M(axixjxk +
∑
J

bJ
∏
l∈J

xl), (3)

where J ⊆ {i, j, k}, |J | ≤ 2,
∏

l∈J xl is set to 1 if J is empty, a ∈ {−1, 1}, and bJ ∈
{−1, 0, 1}. We now apply the quadratization techniques [24] to δijk. After introducing
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an auxiliary variable xw with w > n, we observe the following identities:

−xixjxk = min
xw∈{0,1}

−xw(xi + xj + xk − 2) (4)

xixjxk = min
xw∈{0,1}

(
(xw−1)(xi+xj+xk−1) + (xixj+xixk+xjxk)

)
(5)

In either case, substituting the cubic term axixjxk in δijk with the expression inside
the min operator, we can have a unified quadratic form

ψijk := M
∑
Jw

bJw

∏
l∈Jw

xl, (6)

where Jw ⊆ {i, j, k, w}, |Jw| ≤ 2 and
∏

i∈Jw
xi is set to 1 if Jw is empty. In both

cases, the quadratic form takes the same optimal values as its cubic counterpart given
the optimal assignment, i.e.,

min
xi,xj ,xk,xw

ψijk = min
xi,xj ,xk

δijk, (7)

but the transformation expands the original range of the cubic term from {−1, 0} to
{−1, 0, 1, 2} and from {0, 1} to {0, 1, 3} respectively for a = −1 and a = 1. Therefore,
the cost of the constructed instance of QPBO is bounded in the absolute value by 3M
and the number of added variables is exactly the number of clauses in F . Clearly, this
construction can be computed in polynomial time. Note that when approximation is
used, this transformation is no longer exact (ψijk 6= δijk), as the optimality of the
auxiliary variable xw cannot be guaranteed. However, it can be verified that under all
possible assignments (ignoring the min operator) in either case, ψijk ≥ 0, which is the
key for the reduction to be an approximation preserving (AP) one.

The construction above defines a mapping π from any instance of W3SAT-triv (p1 ∈
I1) to an instance of QPBO (p2 ∈ I2). The mapping σ from feasible solutions of p2
(x ∈ S2(p2)) to that of p1 is defined as follows: if f(x) ≥ M , then let the mapped
solution σ(p1, x) be the all true assignment, otherwise let the mapped solution σ(p1, x)
be xi, i ∈ {1, ..., n}.

Now, we need to show that (π, σ) together with a constant α is an AP-reduction. Let
m1, m2, m∗1 andm∗2 to be short for m1(p1, σ(p1, x)), m2(p2), m∗1(p1), and m∗2(π(p2))
respectively, where ∗ indicates the optimal solution. First, note that σ(p1, x) is always
feasible for W3SAT-triv: either it satisfies F or f(x) ≥ M and therefore σ(p1, x) is
the all-true assignment. In the first case, since every quadratic term is non-negative, we
have

m1 =

n∑
i=1

xiwi (8)

≤
n∑

i=1

xiwi +
∑

Cijk∈F
ψijk(xi, xj , xk) = f(x) = m2. (9)

In the second case, by construction

m1 = M ≤ f(x) = m2. (10)
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Therefore, no matter which case m1 ≤ m2.
Now for the optimal solution, if F is satisfiable, then by construction m∗1 = m∗2.

Recall from Definition 2.5, R = m/m∗. For any instance p1 ∈ I1, for any rational
r > 1, and for any x ∈ S2(p2), if

R2(p2, x) ≤ r, (11)

then

m1 ≤ m2 ≤ rm∗2 = rm∗1 (12)

R1(p1, σ(p1, x)) =
m1

m∗1
≤ r (13)

If F is not satisfiable, m∗1 = M ≤ m∗2 and m2 ≥ m2∗ ≥ M . Thus, for any instance
p1 ∈ I1, for any rational r > 1, and for any x ∈ S2(p2),

R1(p1, σ(p1, x)) =
m1

m∗1
=
M

M
= 1 ≤ r (14)

Therefore (π, σ, 1) is an AP-reduction. Since W3SAT-triv is exp-APX-complete and
QPBO is in exp-APX, we prove that QPBO is exp-APX-complete.

Corollary 3.2. k-label energy minimization is exp-APX-complete for k ≥ 2.

Proof. We create an AP-reduction from QPBO to k-label energy minimization by set-
ting up the unary and pairwise terms to discourage a labeling with the additional k − 2
labels.

Denote QPBO asP1 = (I1,S1,m1,min) and k-label energy minimization asP2 =
(I2,S2,m2,min). Given an instance p1 = (G = (V, E),L1, f) ∈ I1, let M(p1) be a
large number such that all for all x1 ∈ S1, m1 < M . For example, we can let

M =
∑
u∈V

∑
xu∈L1

|fu(xu)|+
∑

(u,v)∈E

∑
xu∈L1

∑
xv∈L1

|fuv(xu, xv)|+ 1. (15)

We define the forward mapping π from any p1 ∈ I1 to p2 = (G = (V, E),L2, g) ∈
I2 as follows:
• gu(a) = fu(a), for ∀a ∈ L1, and ∀u ∈ V;
• gu(a) = M , for ∀a /∈ L1, and ∀u ∈ V;
• guv(a, b) = fuv(a, b), for ∀a, b ∈ L1, and ∀(u, v) ∈ E ;
• guv(a, b) = M if either a or b /∈ L1 for ∀(u, v) ∈ E .
This setup has two properties:
• m2 ≥M if and only if the labeling x2 ∈ S2 includes labels that are not in L1;
• m∗1 = m∗2, for any p1 and p2 = π(p1).
Then we define the reverse mapping σ from any (p2,x2) to x1 ∈ S1 to be
• x1 = x2, if m2 < M ;
• x1 be any fixed feasible solution (e.g., all nodes are labeled as the first label), if
m2 ≥M .
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Observe that in both cases, m1 ≤ m2. For any instance p1 ∈ I1, for any rational
r > 1, and for any x2 ∈ S2, if

R2(p2,x2) =
m2

m∗2
≤ r, (16)

then

m1 ≤ m2 ≤ rm∗2 = rm∗1 (17)

R1(p1,x1) =
m1

m∗1
≤ r (18)

Therefore (π, σ, 1) is an AP-reduction. As QPBO is exp-APX-complete and all energy
minimization problems are in exp-APX, we conclude that k-label energy minimization
is exp-APX-complete for k ≥ 2.

The above construction also formally shows that the energy minimization problem
can only become harder when having a larger labeling space, irrespective of the graph
structure and the interaction type.

A.2 Planar Case

Theorem 4.1. Planar 3-label energy minimization is exp-APX-complete.

Proof. We create an AP-reduction from 3-label energy minimization to planar 3-label
energy minimization by introducing polynomially many auxiliary nodes and edges.

Denote 3-label energy minimization as P1 = (I1,S1,m1,min) and planar 3-label
energy minimization as P2 = (I2,S2,m2,min). Given an instance p1 ∈ I1, we com-
pute a large number M(p1) as in Equation (15) in the proof for Corollary 3.2.

The gadget-based reduction presented in Section 4, defines a forward mapping π
from any p1 = (G1 = (V1, E1),L, f) ∈ I1 to p2 = (G2 = (V2, E2),L, g) ∈ I2. Let
V3 be the nodes added during the reduction, then V2 = V1 ∪ V3. The two gadgets
SPLIT and UNCROSSCOPY are used 4 times each to replace an edge crossing (point of
intersection not at end points) with a planar representation (Figure 4), introducing 22
auxiliary nodes. Since the gadgets can be drawn arbitrarily small so that they are not
intersecting with any other edges, we can repeatedly replace all edge crossings in G1
with this representation. There can be up to O(|E1|2) edge crossings, and we have |V3|
=O(|E1|2). Given that the reduction adds only a polynomial number of auxiliary nodes,
the forward mapping π can be computed by a polynomial time algorithm.

This setup has two properties:
• m2 ≤ M if and only if the labeling x1 is the same as the partial labeling in x2

restricting to nodes in V1 in G2.
• m∗1 = m∗2, for any p1 and p2 = π(p1).
Then we define the reverse mapping σ from any (p2,x2) to x1 ∈ S1 to be
• x1 = x2, if m2 < M ;
• x1 be any fixed feasible solution (e.g., all nodes are labeled as the first label), if
m2 ≥M .
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Observe that in both cases, m1 ≤ m2. For any instance p1 ∈ I1, for any rational
r > 1, and for any x2 ∈ S2, if

R2(p2,x2) =
m2

m∗2
≤ r, (19)

then

m1 ≤ m2 ≤ rm∗2 = rm∗1 (20)

R1(p1,x1) =
m1

m∗1
≤ r (21)

Therefore (π, σ, 1) is an AP-reduction. As 3-label energy minimization is exp-APX-
complete (Corollary 3.2) and all energy minimization problems are in exp-APX, we
conclude that planar 3-label energy minimization is exp-APX-complete.

Corollary 4.2. Planar k-label energy minimization is exp-APX-complete, for k ≥ 3.

Proof. The proof of Corollary 3.2 is graph structure independent. Therefore, the same
proof applies here.

B Relation to Bayesian Networks

There are substantial differences between results for Bayesian networks [2] and our re-
sult. Bayesian networks have a probability density function p(x) that factors according
to a directed acyclic graph, e.g., as p(x1, x2, x3) = p(x1|x2, x3)p(x2)p(x3). Finding
the MAP assignment (same as the most probable estimate (MPE)) in a Bayesian net-
work is related to energy minimization (1) by letting f(x) = − log(p(x)). The prod-
uct is transformed into the sum and so, e.g., factor p(x1|x2, x3) corresponds to term
f1,2,3(x1, x2, x3).

The inapproximability result of Abdelbar and Hedetniemi [2] holds even when re-
stricting to binary variables and factors of order three. However, [2, Section 6.1] count
incoming edges of the network. For a factor p(x1|x2, x3), there are two, but the total
number of variables it couples is three and therefore such a network does not corre-
spond to QPBO. If one restricts to factors of at most two variables, e.g., p(x1|x2), in
a Bayesian network, then only tree-structured models can be represented, which are
easily solvable.

In the other direction, representing pairwise energy (1) as a Bayesian network may
require to use factors of order up to |V| composed of conditional probabilities of the
form p(xi |xj , xk, · · · ) with the number of variables depending on the vertex degrees.
It is seen that while the problems in their most general forms are convertible, fixed-
parameter classes (such as order and graph restrictions) differ significantly. In addition,
the approximation ratio for probabilities translates to an absolute approximation (an
additive bound) for energies. The next corollary of our main result illustrates this point.

Corollary B.1. It is NP-hard to approximate MAP in the value of probability (2) with
any exponential ratio exp(r(n)), where r is polynomial.
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Proof. Recall that the probability p(x) is given by the exponential map of the energy:
p(x) = exp(−f(x)). Assume for contradiction that there is a polynomial time algo-
rithm A that finds solution x and a polynomial r(n) ≥ 0 for n > 0 such that

p(x∗)

p(x)
≤ er(n) (22)

for all instances of the problem. Taking the logarithm,

−f(x∗) + f(x) ≤ r(n). (23)

or,

f(x) ≤ r(n) + f(x∗). (24)

Divide by f(x∗), which, by definition of NPO is positive, we obtain

f(x)

f(x∗)
≤ 1 +

1

f(x∗)
r(n) ≤ 1 + r(n). (25)

where we have used that f(x∗) is integer and positive and hence it is greater or equal to
1. Inequality (25) provides a polynomial ratio approximation for energy minimization.
Since the latter is exp-APX-complete (Corollary 3.2), this contradicts existence of the
polynomial algorithm A, unless P = NP.

Note, this corollary provides a stronger inapproximability result for probabilities
than was proven in [2].

Remark B.2. Abdelbar and Hedetniemi [2] have shown also the following interesting
facts. For Bayesian networks, the following problems are also APX-hard (in the value
of probability):
• Given the optimal solution, approximate the second best solution;
• Given the optimal solution, approximate the optimal solution conditioned on chang-

ing the assignment of one variable.

C Miscellaneous

This result is used in Section 5.2.

Corollary C.1. An O(log k)-approximation implies an O(log |x|)-approximation for
k-label energy minimization problems.

Proof. Observe that an instance of the energy minimization problem (1) is completely
specified by a set of all unary terms fu and pairwise terms fuv . This defines a natu-
ral encoding scheme to describe an instance of an energy minimization problem with
binary alphabet {0, 1}. Assume each potential is encoded by d digits, the input size

|x| = O((k|V|+ k2|V|2)d) = O(k2|V|2). (26)

For an O(log k)-approximation algorithm, the performance ratio

r = O(log k) = O(log k + log |V|) = O(log k|V|) = O(log |x|), (27)

which implies an O(log |x|)-approximation algorithm.


