Abstract
Accurate and robust fusion of pre-procedure magnetic resonance imaging (MRI) to intra-procedure trans-rectal ultrasound (TRUS) imaging is necessary for image-guided prostate cancer biopsy procedures. The current clinical standard for image fusion relies on non-rigid surface-based registration between semi-automatically segmented prostate surfaces in both the MRI and TRUS. This surface-based registration method does not take advantage of internal anatomical prostate structures, which have the potential to provide useful information for image registration. However, non-rigid, multi-modal intensity-based MRI-TRUS registration is challenging due to highly non-linear intensities relationships between MRI and TRUS. In this paper, we present preliminary work using image synthesis to cast this problem into a mono-modal registration task by using a large database of over 100 clinical MRI-TRUS image pairs to learn a joint model of MR-TRUS appearance. Thus, given an MRI, we use this learned joint appearance model to synthesize the patient’s corresponding TRUS image appearance with which we could potentially perform mono-modal intensity-based registration. We present preliminary results of this approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aharon, M., Elad, M., Bruckstein, A.: K -SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54(11), 4311–4322 (2006)
Barentsz, J.O., Richenberg, J., Clements, R., Choyke, P., Verma, S., Villeirs, G., Rouviere, O., Logager, V., FĂ¼tterer, J.J.: ESUR prostate MR guidelines 2012. Eur. Radiol. 22(4), 746–757 (2012)
Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image Underst. 89(2–3), 114–141 (2003)
Jog, A., Carass, A., Roy, S., Pham, D.L., Prince, J.L.: MR image synthesis by contrast learning on neighborhood ensembles. Med. Image Anal. 24(1), 63–76 (2015)
Jog, A., Roy, S., Carass, A., Prince, J.L.: Magnetic resonance image synthesis through patch regression. In: IEEE 10th International Symposium on Biomedical Imaging (ISBI) 2013, pp. 350–353 (2013)
Karnik, V.V., Fenster, A., Bax, J., Cool, D.W., Gardi, L., Gyacskov, I., Romagnoli, C., Ward, A.D.: Assessment of image registration accuracy in three-dimensional transrectal ultrasound guided prostate biopsy. Med. Phys. 37(2), 802–813 (2010)
Mitra, J., Mart, R., Oliver, A., Llad, X., Ghose, S., Vilanova, J., Meriaudeau, F.: Prostate multimodality image registration based on B-splines and quadrature local energy. Int. J. Comput. Assist. Radiol. Surg. 7(3), 445–454 (2012)
Moradi, M., Janoos, F., Fedorov, A., Risholm, P., Kapur, T., Wolfsberger, L., Nguyen, P., Tempany, C., Wells, W.: Two solutions for registration of ultrasound to MRI for image-guided prostate interventions. In: IEEE EMBC, pp. 1129–1132 (2012)
Narayanan, R., Kurhanewicz, J., Shinohara, K., Crawford, E.D., Simoneau, A., Suri, J.: MRI-ultrasound registration for targeted prostate biopsy. In: IEEE ISBI, pp. 991–994 (2009)
Papademetris, X., Jackowski, A.P., Schultz, R.T., Staib, L.H., Duncan, J.S.: Computing 3D non-rigid brain registration using extended robust point matching for composite multisubject fMRI analysis. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 788–795. Springer, Heidelberg (2003)
Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE TMI 18(8), 712–721 (1999)
Sparks, R., Nicolas Bloch, B., Feleppa, E., Barratt, D., Moses, D., Ponsky, L., Madabhush, A.: Multiattribute probabilistic prostate elastic registration (MAPPER): application to fusion of ultrasound and magnetic resonance imaging. Med. Phys. 42(3), 1153–1163 (2015)
Sun, Y., Yuan, J., Rajchl, M., Qiu, W., Romagnoli, C., Fenster, A.: Efficient convex optimization approach to 3D non-rigid MR-TRUS registration. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 195–202. Springer, Heidelberg (2013)
Tempany, C., Straus, S., Hata, N., Haker, S.: MR-guided prostate interventions. J. Magn. Reson. Imaging 27(2), 356–367 (2008)
Ukimura, O., Faber, K., Gill, I.S.: Intraprostatic targeting. Curr. Opin. Urol. 22(2), 97–103 (2012)
Xu, S., Kruecker, J., Guion, P., Glossop, N., Neeman, Z., Choyke, P.L., Singh, A.K., Wood, B.J.: Closed-loop control in fused MR-TRUS image-guided prostate biopsy. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 128–135. Springer, Heidelberg (2007)
Xu, S., Kruecker, J., Turkbey, B., Glossop, N., Singh, A.K., Choyke, P., Pinto, P., Wood, B.J.: Real-time MRI-TRUS fusion for guidance of targeted prostate biopsies. Comput. Aided Surg. 13(5), 255–264 (2008)
Acknowledgments
This work was supported in part by the NIH under grant R41/42-CA186414.
Disclosure: Dr. Papademetris is a consultant for Electrical Geodesics, Inc.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Onofrey, J.A., Oksuz, I., Sarkar, S., Venkataraman, R., Staib, L.H., Papademetris, X. (2016). MRI-TRUS Image Synthesis with Application to Image-Guided Prostate Intervention. In: Tsaftaris, S., Gooya, A., Frangi, A., Prince, J. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2016. Lecture Notes in Computer Science(), vol 9968. Springer, Cham. https://doi.org/10.1007/978-3-319-46630-9_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-46630-9_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46629-3
Online ISBN: 978-3-319-46630-9
eBook Packages: Computer ScienceComputer Science (R0)