Skip to main content

Microstructure Imaging Sequence Simulation Toolbox

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9968))

Included in the following conference series:

  • 1235 Accesses

Abstract

This work describes Microstructure Imaging Sequence Simulation Toolbox (MISST), a practical diffusion MRI simulator for development, testing, and optimisation of novel MR pulse sequences for microstructure imaging. Diffusion MRI measures molecular displacement at microscopic level and provides a non-invasive tool for probing tissue microstructure. The measured signal is determined by various cellular features such as size, shape, intracellular volume fraction, orientation, etc., as well as the acquisition parameters of the diffusion sequence. Numerical simulations are a key step in understanding the effect of various parameters on the measured signal, which is important when developing new techniques for characterizing tissue microstructure using diffusion MRI. Here we present MISST - a semi-analytical simulation software, which is based on a matrix method approach and computes diffusion signal for fully general, user specified pulse sequences and tissue models. Its key purpose is to provide a deep understanding of the restricted diffusion MRI signal for a wide range of realistic, fully flexible scanner acquisition protocols, in practical computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jones, D.K., Diffusion, M.R.I.: Theory, Methods and Application. Oxford University Press, Oxford (2010)

    Google Scholar 

  2. Johansen-Berg, H., Behrens, T.E.J.: MRI: Diffusion from Quantitative Measurement to in Vivo Neuroanatomy. Academic Press, San Diego (2009)

    Google Scholar 

  3. Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., Basser, P.J.: AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn. Reson. Med. 59(6), 1347–1354 (2008)

    Article  Google Scholar 

  4. Alexander, D.C., Hubbard, P.L., Hall, M.G., Moore, E.A., Ptito, M., Parker, G.J.M., Dyrby, T.B.: Orientationally invariant indices of axon diameter and density from diffusion MRI. NeuroImage 52, 1374–1389 (2010)

    Article  Google Scholar 

  5. Panagiotaki, E., Walker-Samuel, S., Siow, B., Johnson, S.P., Rajkumar, V., Pedley, R.B., Lythgoe, M.F., Alexander, D.C.: Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res. 74, 1902–1912 (2014)

    Article  Google Scholar 

  6. Zhang, H., Hubbard, P.L., Parker, G.J.M., Alexander, D.C.: Axon diameter mapping in the presence of orientation dispersion with diffusion MRI. NeuroImage 56, 1301–1315 (2011)

    Article  Google Scholar 

  7. Ianuş, A., Drobnjak, I., Alexander, D.C.: Model-based estimation of microscopic anisotropy using diffusion MRI: a simulation study. NMR Biomed. 29, 627–685 (2016)

    Google Scholar 

  8. Drobnjak, I., Zhang, H., Ianuş, A., Kaden, E., Alexander, D.C.: PGSE, OGSE, and sensitivity to axon diameter in diffusion MRI: Insight from a simulation study. Magn. Reson. Med. 75, 688–700 (2016)

    Article  Google Scholar 

  9. Shemesh, N., Lanuş, A., Alexander, D.C., Drobnjak, I.: Double oscillating diffusion encoding (DODE) augments microscopic anisotropy contrast. In: Proceedings of ISMRM, p. 952, Toronto, Canada (2015)

    Google Scholar 

  10. Stejskal, E.O.: Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J. Chem. Phys. 43, 3597–3603 (1965)

    Article  Google Scholar 

  11. Neuman, C.H.: Spin echo of spins diffusing in a bounded medium. J. Chem. Phys. 60, 4508–4511 (1974)

    Article  Google Scholar 

  12. Xu, J., Does, M.D., Gore, J.C.: Quantitative characterization of tissue microstructure with temporal diffusion spectroscopy. J. Magn. Reson. 200, 189–197 (2009)

    Article  Google Scholar 

  13. Ianuş, A., Siow, B., Drobnjak, I., Zhang, H., Alexander, D.C.: Gaussian phase distribution approximations for oscillating gradient spin-echo diffusion (MRI). J. Magn. Reson. 227, 25–34 (2013)

    Article  Google Scholar 

  14. Callaghan, P.T.: A simple matrix formalism for spin echo analysis of restricted diffusion under generalized gradient waveforms. J. Magn. Reson. 129, 74–84 (1997)

    Article  Google Scholar 

  15. Grebenkov, D.: Laplacian eigenfunctions in NMR. I. A numerical tool. Concepts Magn. Reson. Part A 32, 277–301 (2008)

    Article  Google Scholar 

  16. Kuder, T.A., Laun, F.B.: NMR-based diffusion pore imaging by double wave vector measurements. Magn. Reson. Med. 70, 836–841 (2013)

    Article  Google Scholar 

  17. Xu, J., Does, M.D., Gore, J.C.: Numerical study of water diffusion in biological tissues using an improved finite difference method. Phys. Med. Biol. 52, N111–N126 (2007)

    Article  Google Scholar 

  18. Li, J.-R., Calhoun, D., Poupon, C., Le Bihan, D.: Numerical simulation of diffusion mri signals using an adaptive time-stepping method. Phys. Med. Biol. 59, 441–454 (2014)

    Article  Google Scholar 

  19. Hall, M.G., Alexander, D.C.: Convergence and parameter choice for Monte-Carlo simulations of diffusion MRI. IEEE Trans. Med. Imaging 28, 1354–1364 (2009)

    Article  Google Scholar 

  20. Yeh, C.H., Schmitt, B., Le Bihan, D., Li-Schlittgen, J.R., Lin, C.P., Poupon, C., Diffusion microscopist simulator: a general monte carlo simulation system for diffusion magnetic resonance imaging. In: PLoS ONE (2013)

    Google Scholar 

  21. Drobnjak, I., Alexander, D.C.: Optimising time-varying gradient orientation for microstructure sensitivity in diffusion-weighted MR. J. Magn. Reson. 212, 344–354 (2011)

    Article  Google Scholar 

  22. Westin, C.-F., Szczepankiewicz, F., Pasternak, O., Özarslan, E., Topgaard, D., Knutsson, H., Nilsson, M.: Measurement tensors in diffusion MRI: generalizing the concept of diffusion encoding. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part III. LNCS, vol. 8675, pp. 209–216. Springer, Heidelberg (2014)

    Google Scholar 

  23. Callaghan, P.T.: Principles of Magnetic Resonance Microscopy. Oxford Science Publications, Oxford (1991)

    Google Scholar 

  24. Drobnjak, I., Zhang, H., Hall, M.G., Alexander, D.C.: The matrix formalism for generalised gradients with time-varying orientation in diffusion NMR. J. Magn. Reson. 210, 151–157 (2011)

    Article  Google Scholar 

  25. Caprihan, A., Wang, L.Z., Fukushima, E.: A multiple-narrow-pulse approximation for restricted diffusion in a time-varying field gradient. J. Magn. Reson. Ser. A 118, 94–102 (1996)

    Article  Google Scholar 

  26. Panagiotaki, E., Schneider, T., Siow, B., Hall, M.G., Lythgoe, M.F., Alexander, D.C.: Compartment models of the diffuison MR signal in brain white matter: a taxonomy and comparison. NeuroImage 59, 2241–2254 (2012)

    Article  Google Scholar 

  27. Callaghan, P.T., Coy, A., MacGowan, D., Packer, K.J., Zelaya, F.O.: Diffraction-like effects in NMR diffusion studies of fluids in porous solids. Nature 351, 467–469 (1991)

    Article  Google Scholar 

  28. Balinov, B., Jonsson, B., Linse, P., Soderman, O.: The NMR self-diffusion method applied to restricted diffusion. simulation of echo attenuation from molecules in spheres and between planes. J. Magn. Reson. 104, 17–25 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrada Ianuş .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Ianuş, A., Alexander, D.C., Drobnjak, I. (2016). Microstructure Imaging Sequence Simulation Toolbox. In: Tsaftaris, S., Gooya, A., Frangi, A., Prince, J. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2016. Lecture Notes in Computer Science(), vol 9968. Springer, Cham. https://doi.org/10.1007/978-3-319-46630-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46630-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46629-3

  • Online ISBN: 978-3-319-46630-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics