Skip to main content

Local Dual-Cross Ternary Pattern for Feature Representation

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9967))

Included in the following conference series:

  • 2844 Accesses

Abstract

Extracting effective features is a fundamental issue in image representation and recognition. In this paper, we present a new feature representation method for image recognition based on Local Ternary Pattern and Dual-Cross Pattern, named Local Dual-Cross Ternary Pattern (LDCTP). LDCTP is a feature representation inspired by the sole textural structure of human faces. It is efficient and only quadruples the cost of computing Local Binary Pattern. Experiments show that LDCTP outperforms other descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Turk, M., Pentland, A.P.: Face recognition system: U.S. Patent 5,164,992. 1992-11-17

    Google Scholar 

  2. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  3. Cortes, C., Vapnik, V.: Support vector machine. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  4. Berger, J.: The case for objective Bayesian analysis. Bayesian Anal. 1(3), 385–402 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  6. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  7. Liu, C., Wechsler, H.: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans. Image Process. 11(4), 467–476 (2002)

    Article  Google Scholar 

  8. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)

    Article  MathSciNet  Google Scholar 

  9. Wolf, L., Hassner, T., Taigman, Y.: Effective unconstrained face recognition by combining multiple descriptors and learned background statistics. IEEE Trans. Pattern Anal. Mach. Intell. 33(10), 1978–1990 (2011)

    Article  Google Scholar 

  10. Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning multi-scale block local binary patterns for face recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 828–837. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theor. 37(1), 145–151 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  13. Ren, J., Jiang, X., Yuan, J.: Relaxed local ternary pattern for face recognition. In: ICIP, pp. 3680–3684 (2013)

    Google Scholar 

  14. Ding, C., Choi, J., Tao, D., et al.: Multi-directional multi-level dual-cross patterns for robust face recognition. IEEE Trans. Pattern Anal. Mach. Intell. (1), 1

    Google Scholar 

  15. Xie, S., Shan, S., Chen, X., Chen, J.: Fusing local patterns of gabor magnitude and phase for face recognition. IEEE Trans. Image Process. 19(5), 1349–1361 (2010)

    Article  MathSciNet  Google Scholar 

  16. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Lei, Z., Yi, D., Li, S.Z.: Discriminant image filter learning for face recognition with local binary pattern like representation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2512–2517 (2012)

    Google Scholar 

  18. Zhang, B., Gao, Y., Zhao, S., et al.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 19(2), 533–544 (2010)

    Article  MathSciNet  Google Scholar 

  19. Phillips, P.J., Wechsler, H., Huang, J., et al.: The FERET database and evaluation procedure for face-recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

This project is partly supported by NSF of China (61375001, 31200747), the Natural Science Foundation of Jiangsu Province (No. BK20140638, BK2012437, BK20140566, BK20150470), the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wankou Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Zhou, P., Peng, Y., Shen, J., Zhang, B., Yang, W. (2016). Local Dual-Cross Ternary Pattern for Feature Representation. In: You, Z., et al. Biometric Recognition. CCBR 2016. Lecture Notes in Computer Science(), vol 9967. Springer, Cham. https://doi.org/10.1007/978-3-319-46654-5_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46654-5_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46653-8

  • Online ISBN: 978-3-319-46654-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics