Abstract
Extracting effective features is a fundamental issue in image representation and recognition. In this paper, we present a new feature representation method for image recognition based on Local Ternary Pattern and Dual-Cross Pattern, named Local Dual-Cross Ternary Pattern (LDCTP). LDCTP is a feature representation inspired by the sole textural structure of human faces. It is efficient and only quadruples the cost of computing Local Binary Pattern. Experiments show that LDCTP outperforms other descriptors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Turk, M., Pentland, A.P.: Face recognition system: U.S. Patent 5,164,992. 1992-11-17
Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)
Cortes, C., Vapnik, V.: Support vector machine. Mach. Learn. 20(3), 273–297 (1995)
Berger, J.: The case for objective Bayesian analysis. Bayesian Anal. 1(3), 385–402 (2006)
Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)
Liu, C., Wechsler, H.: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans. Image Process. 11(4), 467–476 (2002)
Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)
Wolf, L., Hassner, T., Taigman, Y.: Effective unconstrained face recognition by combining multiple descriptors and learned background statistics. IEEE Trans. Pattern Anal. Mach. Intell. 33(10), 1978–1990 (2011)
Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning multi-scale block local binary patterns for face recognition. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 828–837. Springer, Heidelberg (2007)
Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theor. 37(1), 145–151 (1991)
Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
Ren, J., Jiang, X., Yuan, J.: Relaxed local ternary pattern for face recognition. In: ICIP, pp. 3680–3684 (2013)
Ding, C., Choi, J., Tao, D., et al.: Multi-directional multi-level dual-cross patterns for robust face recognition. IEEE Trans. Pattern Anal. Mach. Intell. (1), 1
Xie, S., Shan, S., Chen, X., Chen, J.: Fusing local patterns of gabor magnitude and phase for face recognition. IEEE Trans. Image Process. 19(5), 1349–1361 (2010)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Lei, Z., Yi, D., Li, S.Z.: Discriminant image filter learning for face recognition with local binary pattern like representation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2512–2517 (2012)
Zhang, B., Gao, Y., Zhao, S., et al.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 19(2), 533–544 (2010)
Phillips, P.J., Wechsler, H., Huang, J., et al.: The FERET database and evaluation procedure for face-recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)
Acknowledgments
This project is partly supported by NSF of China (61375001, 31200747), the Natural Science Foundation of Jiangsu Province (No. BK20140638, BK2012437, BK20140566, BK20150470), the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Zhou, P., Peng, Y., Shen, J., Zhang, B., Yang, W. (2016). Local Dual-Cross Ternary Pattern for Feature Representation. In: You, Z., et al. Biometric Recognition. CCBR 2016. Lecture Notes in Computer Science(), vol 9967. Springer, Cham. https://doi.org/10.1007/978-3-319-46654-5_66
Download citation
DOI: https://doi.org/10.1007/978-3-319-46654-5_66
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46653-8
Online ISBN: 978-3-319-46654-5
eBook Packages: Computer ScienceComputer Science (R0)