Skip to main content

Nuclear Norm Regularized Randomized Neural Network

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9948))

Included in the following conference series:

  • 3037 Accesses

Abstract

Extreme Learning Machine (ELM) or Randomized Neural Network (RNN) is a feedforward neural network where the network weights between the input and the hidden layer are not learned; they are assigned from some probability distribution. The weights between the hidden layer and the output targets are learnt. Neural networks are believed to mimic the human brain; it is well known that the brain is a redundant network. In this work we propose to explicitly model the redundancy of the human brain. We model redundancy as linear dependency of link weights; this leads to a low-rank model of the output (hidden layer to target) network. This is solved by imposing a nuclear norm penalty. The proposed technique is compared with the basic ELM and the Sparse ELM. Results on benchmark datasets, show that our method outperforms both of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Paul, S., Boutsidis, C., Magdon-Ismail, M., Drinea, P.: Random projections for linear support vector machines. ACM Trans. Knowl. Disc. Data 8(4) (2014). Article 22

    Google Scholar 

  2. Shi, Q., Shen, C., Hill, R., van den Hengel. A.: Is margin preserved after random projection? In: ICML (2012)

    Google Scholar 

  3. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)

    Article  Google Scholar 

  4. Scardapane, S., Comminiello, D., Scarpiniti, M., Uncini, A.: Online sequential extreme learning machine with kernels. IEEE Trans. Neural Netw. Learn. Syst. 26(9), 2214–2220 (2015)

    Article  MathSciNet  Google Scholar 

  5. Zhou, Y., Peng, J., Chen, C.L.P.: Extreme learning machine with composite kernels for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sen. 8(6), 2351–2360 (2015)

    Article  Google Scholar 

  6. LeCun, Y.: Optimal Brain Damage. In: NIPS (1990)

    Google Scholar 

  7. Thom, M., Palm, G.: Sparse activity and sparse connectivity in supervised learning. J. Mach. Learn. Res. 14, 1091–1143 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Gripon, V.: Sparse neural networks with large learning diversity. IEEE Trans. Neural Netw. Learn. Syst. 22(7), 1087–1096 (2011)

    Article  Google Scholar 

  9. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifer neural networks. In: AISTATS 2011 (2011)

    Google Scholar 

  10. Bai, Z., Huang, G.-B., Wang, D., Wang, H., Westover, M.B.: Sparse extreme learning machine for classification. IEEE Trans. Cybern. 44(10), 1858–1870 (2014)

    Article  Google Scholar 

  11. Gogna, A., Majumdar, A.: Matrix completion incorporating auxiliary information for recommender system design. Expert Syst. Appl. 42(5), 5789–5799 (2015)

    Article  Google Scholar 

  12. Majumdar, A., Ward, R.K.: Increasing energy efficiency in sensor networks: blue noise sampling and non-convex matrix completion. Int. J. Sens. Netw. 9(3/4), 158–169 (2011)

    Article  Google Scholar 

  13. Jindal, A., Psounis, K.: Modeling spatially correlated data in sensor networks. ACM Trans. Sensor Netw. 2(4), 466–499 (2006)

    Article  Google Scholar 

  14. Pal, P., Vaidyanathan, P.P.: A grid-less approach to underdetermined direction of arrival estimation via low rank matrix denoising. IEEE Sign. Proces. Lett. 21(6), 737–741 (2014)

    Article  Google Scholar 

  15. Gogna, A., Shukla, A., Majumdar, A.: Matrix Recovery using Split Bregman. In: International Conference on Pattern Recognition (2014)

    Google Scholar 

  16. Majumdar, A., Ward, R.K.: Some empirical advances in matrix completion. Sign. Process. 91(5), 1334–1338 (2011)

    Article  MATH  Google Scholar 

  17. Chartrand, R.: Nonconvex splitting for regularized low-rank + sparse decomposition. IEEE Trans. Sig. Process. 60, 5810–5819 (2012)

    Article  MathSciNet  Google Scholar 

  18. http://archive.ics.uci.edu/ml/

  19. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  20. http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angshul Majumdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Gogna, A., Majumdar, A. (2016). Nuclear Norm Regularized Randomized Neural Network. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9948. Springer, Cham. https://doi.org/10.1007/978-3-319-46672-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46672-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46671-2

  • Online ISBN: 978-3-319-46672-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics