Abstract
As an effective way of avoiding the curse of dimensionality and leveraging the predictive performance in high-dimensional regression analysis, dimension reduction suffers from small sample size. We proposed to utilize group information generated from pairwise data, to learn a low-dimensional representation highly correlated with target value. Experimental results on four public datasets imply that the proposed method can reduce regression error by effective dimension reduction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Available in http://archive.ics.uci.edu/ml/datasets.html.
References
Burges, C.J.: Dimension Reduction: A Guided Tour. Now Publishers Inc., Hanover (2010)
Chen, W.Y., Song, Y., Bai, H., Lin, C.J., Chang, E.Y.: Parallel spectral clustering in distributed systems. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 568–586 (2011)
Chen, X., Liu, H., Carbonell, J.G.: Structured sparse canonical correlation analysis. AISTATS 12, 199–207 (2012)
Ebtehaj, A.M., Bras, R.L., Foufoula-Georgiou, E.: Shrunken locally linear embedding for passive microwave retrieval of precipitation. IEEE Trans. Geosci. Remote Sens. 53(7), 3720–3736 (2015)
Fruchter, B.: Introduction to factor analysis (1954)
Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 16(12), 2639–2664 (2004)
Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(6), 417 (1933)
Hotelling, H.: Relations between two sets of variates. Biometrika 28(3/4), 321–377 (1936)
Jolliffe, I.: Principal Component Analysis. Wiley, Hoboken (2002)
McWilliams, B., Balduzzi, D., Buhmann, J.M.: Correlated random features for fast semi-supervised learning. In: Advances in Neural Information Processing Systems, pp. 440–448 (2013)
Niyogi, X.: Locality preserving projections. In: Neural Information Processing Systems, vol. 16, p. 153. MIT (2004)
Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)
Shen, X., Sun, Q.: A novel semi-supervised canonical correlation analysis and extensions for multi-view dimensionality reduction. J. Vis. Commun. Image Represent. 25(8), 1894–1904 (2014)
Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)
Dymowa, L.: Introduction. In: Dymowa, L. (ed.) Soft Computing in Economics and Finance. ISRL, vol. 6, pp. 1–5. Springer, Heidelberg (2011)
Zhang, Z., Zha, H.: Nonlinear dimension reduction via local tangent space alignment. In: Liu, J., Cheung, Y., Yin, H. (eds.) IDEAL 2003. LNCS, vol. 2690, pp. 477–481. Springer, Heidelberg (2003)
Acknowledgements
This work was funded by Samsung Electronics Co., Ltd and the NSFC (Grant No. 61273299).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Zhu, H., Shan, H., Lee, Y., He, Y., Zhou, Q., Zhang, J. (2016). Group Information-Based Dimensionality Reduction via Canonical Correlation Analysis. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9948. Springer, Cham. https://doi.org/10.1007/978-3-319-46672-9_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-46672-9_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46671-2
Online ISBN: 978-3-319-46672-9
eBook Packages: Computer ScienceComputer Science (R0)