Skip to main content

Group Information-Based Dimensionality Reduction via Canonical Correlation Analysis

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9948))

Included in the following conference series:

  • 3041 Accesses

Abstract

As an effective way of avoiding the curse of dimensionality and leveraging the predictive performance in high-dimensional regression analysis, dimension reduction suffers from small sample size. We proposed to utilize group information generated from pairwise data, to learn a low-dimensional representation highly correlated with target value. Experimental results on four public datasets imply that the proposed method can reduce regression error by effective dimension reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available in http://archive.ics.uci.edu/ml/datasets.html.

References

  1. Burges, C.J.: Dimension Reduction: A Guided Tour. Now Publishers Inc., Hanover (2010)

    MATH  Google Scholar 

  2. Chen, W.Y., Song, Y., Bai, H., Lin, C.J., Chang, E.Y.: Parallel spectral clustering in distributed systems. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 568–586 (2011)

    Article  Google Scholar 

  3. Chen, X., Liu, H., Carbonell, J.G.: Structured sparse canonical correlation analysis. AISTATS 12, 199–207 (2012)

    Google Scholar 

  4. Ebtehaj, A.M., Bras, R.L., Foufoula-Georgiou, E.: Shrunken locally linear embedding for passive microwave retrieval of precipitation. IEEE Trans. Geosci. Remote Sens. 53(7), 3720–3736 (2015)

    Article  Google Scholar 

  5. Fruchter, B.: Introduction to factor analysis (1954)

    Google Scholar 

  6. Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 16(12), 2639–2664 (2004)

    Article  MATH  Google Scholar 

  7. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24(6), 417 (1933)

    Article  MATH  Google Scholar 

  8. Hotelling, H.: Relations between two sets of variates. Biometrika 28(3/4), 321–377 (1936)

    Article  MATH  Google Scholar 

  9. Jolliffe, I.: Principal Component Analysis. Wiley, Hoboken (2002)

    MATH  Google Scholar 

  10. McWilliams, B., Balduzzi, D., Buhmann, J.M.: Correlated random features for fast semi-supervised learning. In: Advances in Neural Information Processing Systems, pp. 440–448 (2013)

    Google Scholar 

  11. Niyogi, X.: Locality preserving projections. In: Neural Information Processing Systems, vol. 16, p. 153. MIT (2004)

    Google Scholar 

  12. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  13. Shen, X., Sun, Q.: A novel semi-supervised canonical correlation analysis and extensions for multi-view dimensionality reduction. J. Vis. Commun. Image Represent. 25(8), 1894–1904 (2014)

    Article  Google Scholar 

  14. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  15. Dymowa, L.: Introduction. In: Dymowa, L. (ed.) Soft Computing in Economics and Finance. ISRL, vol. 6, pp. 1–5. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Zhang, Z., Zha, H.: Nonlinear dimension reduction via local tangent space alignment. In: Liu, J., Cheung, Y., Yin, H. (eds.) IDEAL 2003. LNCS, vol. 2690, pp. 477–481. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Acknowledgements

This work was funded by Samsung Electronics Co., Ltd and the NSFC (Grant No. 61273299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Zhu, H., Shan, H., Lee, Y., He, Y., Zhou, Q., Zhang, J. (2016). Group Information-Based Dimensionality Reduction via Canonical Correlation Analysis. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9948. Springer, Cham. https://doi.org/10.1007/978-3-319-46672-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46672-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46671-2

  • Online ISBN: 978-3-319-46672-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics