Skip to main content

Bi-Lp-Norm Sparsity Pursuiting Regularization for Blind Motion Deblurring

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9948))

Included in the following conference series:

Abstract

Blind motion deblurring from a single image is essentially an ill-posed problem that requires regularization to solve. In this paper, we introduce a new type of an efficient and fast method for the estimation of the motion blur-kernel, through a bi-lp-norm regularization applied on both the sharp image and the blur kernel in the MAP framework. Without requiring any prior information of the latent image and the blur kernel, our proposed approach is able to restore high-quality images from given blurred images. Moreover a fast numerical scheme is used for alternatingly caculating the sharp image and the blur-kernel, by combining the split Bregman method and look-up table trick. Experiments on both sythesized and real images revealed that our algorithm can compete with much more sophisticated state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fergus, R., Singh, B., Hertzmann, A., et al.: Removing camera shake from a single photograph. ACM Trans. Graph. (TOG) 25(3), 787–794 (2006)

    Article  Google Scholar 

  2. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors. In: Advances in Neural Information Processing Systems (2009)

    Google Scholar 

  3. Levin, A., et al.: Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. (TOG) 26(3), 70 (2007). ACM

    Article  Google Scholar 

  4. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. (TOG) 27(3) (2008). ACM

    Google Scholar 

  5. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2011)

    Google Scholar 

  6. Cai, J.-F, et al.: Blind motion deblurring from a single image using sparse approximation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009. IEEE (2009)

    Google Scholar 

  7. Krishnan, D., Bruna, J., Fergus, R.: Blind deconvolution with non-local sparsity reweighting arXiv preprint arXiv:1311.4029 (2013)

  8. Xu, L., Zheng, S., Jia, J.: Unnatural l0 sparse representation for natural image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2013)

    Google Scholar 

  9. Kotera, J., Šroubek, F., Milanfar, P.: Blind deconvolution using alternating maximum a posteriori estimation with heavy-tailed priors. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part II. LNCS, vol. 8048, pp. 59–66. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Shao, W.-Z., Li, H.-B., Elad, M.: Bi-l 0-l 2-norm regularization for blind motion deblurring. J. Vis. Commun. Image Represent. 33, 42–59 (2015)

    Article  Google Scholar 

  11. Xu, Z.B., et al.: \(\text{ L }1/2\) regularization. Sci. China Inf. Sci. 53(6), 1159–1169 (2010)

    Article  MathSciNet  Google Scholar 

  12. Tibshirani, R.: Regression shrinkage, selection via the lasso. J. Royal Stat. Soc. Ser. B (Methodol.) 267–288 (1996)

    Google Scholar 

  13. Levin, A., et al.: Understanding and evaluating blind deconvolution algorithms. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009. IEEE (2009)

    Google Scholar 

  14. Yin, W., et al.: Bregman iterative algorithms for L1-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Gan, W., Zhou, Y., He, L. (2016). Bi-Lp-Norm Sparsity Pursuiting Regularization for Blind Motion Deblurring. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9948. Springer, Cham. https://doi.org/10.1007/978-3-319-46672-9_81

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46672-9_81

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46671-2

  • Online ISBN: 978-3-319-46672-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics