Skip to main content

Chaotic Feature Selection and Reconstruction in Time Series Prediction

  • Conference paper
  • First Online:
  • 3117 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9949))

Abstract

The challenge in feature selection for time series lies in achieving similar prediction performance when compared with the original dataset. The method has to ensure that important information has not been lost by with feature selection for data reduction. We present a chaotic feature selection and reconstruction method based on statistical analysis for time series prediction. The method can also be viewed as a way for reduction of data through selection of most relevant features with the hope of reducing training time for learning algorithms. We employ cooperative neuro-evolution as a machine learning tool to evaluate the performance of the proposed method. The results show that our method gives a data reduction of up to 42 % with a similar performance when compared to the literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Crone, S.F., Kourentzes, N.: Feature selection for time series prediction-a combined filter and wrapper approach for neural networks. Neurocomputing 73(10), 1923–1936 (2010)

    Article  Google Scholar 

  2. Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19(2), 171–209 (2014)

    Article  Google Scholar 

  3. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1), 273–324 (1997)

    Article  MATH  Google Scholar 

  4. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  5. Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based filter solution. In: ICML, vol. 3, pp. 856–863 (2003)

    Google Scholar 

  6. Sandya, H.B., Hemanth Kumar, P., Patil, S.B.: Feature extraction, classification and forecasting of time series signal using fuzzy and garch techniques. In: National Conference on Challenges in Research and Technology in the Coming Decades (CRT 2013), IET, pp. 1–7 (2013)

    Google Scholar 

  7. Olszewski, R.T.: Generalized feature extraction for structural pattern recognition in time-series data. DTIC Document, Technical report (2001)

    Google Scholar 

  8. Cavalcante, E., Pereira, J., Alves, M.P., Maia, P., Moura, R., Batista, T., Delicato, F.C., Pires, P.F.: On the interplay of internet of things and cloud computing: a systematic mapping study. Comput. Commun. 8990, 17–33 (2016)

    Article  Google Scholar 

  9. Chen, C.P., Zhang, C.-Y.: Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf. Sci. 275, 314–347 (2014)

    Article  Google Scholar 

  10. Chandra, R., Zhang, M.: Cooperative coevolution of Elman recurrent neural networks for chaotic time series prediction. Neurocomputing 186, 116–123 (2012)

    Article  Google Scholar 

  11. Takens, F.: On the Numerical Determination of the Dimension of an Attractor. Springer, Heidelberg (1985)

    Book  MATH  Google Scholar 

  12. Potter, M.A., Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). doi:10.1007/3-540-58484-6_269

    Chapter  Google Scholar 

  13. Chandra, R., Frean, M., Zhang, M.: On the issue of separability for problem decomposition in cooperative neuro-evolution. Neurocomputing 87, 33–40 (2012)

    Article  Google Scholar 

  14. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197, 287–289 (1977)

    Article  Google Scholar 

  15. Lorenz, E.: Deterministic non-periodic flows. J. Atmos. Sci. 20, 267–285 (1963)

    Google Scholar 

  16. SILSO World Data Center: The International Sunspot Number (1834-2001), International Sunspot Number Monthly Bulletin and Online Catalogue, Royal Observatory of Belgium, Avenue Circulaire 3, 1180 Brussels, Belgium. http://www.sidc.be/silso/. Accessed 02 Feb 2015

  17. Hübner, U., Abraham, N.B., Weiss, C.O.: Dimensions and entropies of chaotic intensity pulsations in a single-mode far-infrared NH3 laser. Phys. Rev. A 40(11), 6354–6365 (1989)

    Article  Google Scholar 

  18. The Santa Fe Time Series Competition Data. http://www-psych.stanford.edu/~andreas/Time-Series/SantaFe.html. Accessed 01 May 2015

  19. Lin, C.-J., Chen, C.-H., Lin, C.-T.: A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 39(1), 55–68 (2009)

    Article  Google Scholar 

  20. Ardalani-Farsa, M., Zolfaghari, S.: Residual analysis and combination of embedding theorem and artificial intelligence in chaotic time series forecasting. Appl. Artif. Intell. 25, 45–73 (2011)

    Article  Google Scholar 

  21. Menezes, J.M.P., Barreto, G.A.: Long-term time series prediction with the NARX network: an empirical evaluation. Neurocomputing 71(16), 3335–3343 (2008)

    Article  Google Scholar 

  22. Teo, K.K., Wang, L., Lin, Z.: Wavelet packet multi-layer perceptron for chaotic time series prediction: effects of weight initialization. In: Alexandrov, V.N., Dongarra, J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS-ComputSci 2001. LNCS, vol. 2074, pp. 310–317. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  23. Chandra, R.: Competition and collaboration in cooperative coevolution of Elman recurrent neural networks for time-series prediction. IEEE Trans. Neural Netw. Learn. Syst. 26(12), 3123–3136 (2015)

    Article  MathSciNet  Google Scholar 

  24. Mirikitani, D., Nikolaev, N.: Recursive bayesian recurrent neural networks for time-series modeling. IEEE Trans. Neural Netw. 21(2), 262–274 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohitash Chandra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Hussein, S., Chandra, R. (2016). Chaotic Feature Selection and Reconstruction in Time Series Prediction. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9949. Springer, Cham. https://doi.org/10.1007/978-3-319-46675-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46675-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46674-3

  • Online ISBN: 978-3-319-46675-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics