Abstract
Deep learning has been a growing trend in various fields of natural image classification as it performs state-of-the-art result on several challenging tasks. Despite its success, deep learning applied to medical image analysis has not been wholly explored. In this paper, we study on convolutional neural network (CNN) architectures applied to a Bosniak classification problem to classify Computed Tomography images into five Bosniak classes. We use a new medical image dataset called as the Bosniak classification dataset which will be fully introduced in this paper. For this data set, we employ a multi-phase CNN approach to predict classification accuracy. We also discuss the representation power of CNN compared to previously developed features (Garbor features) in medical image. In our experiment, we use data combination method to enlarge the data set to avoid overfitting problem in multi-phase medical imaging system. Using multi-phase CNN and data combination method we proposed, we have achieved 48.9 % accuracy on our test set, which improves the hand-crafted features by 11.9 %.
This work was supported by Brain Fusion Program of Soul National University (800-20140265).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Digital image and Communications in Medicine (DICOM) is a standard for handling, storing, printing, and transmitting information in medical image.
- 2.
The term ‘unregistered’ is used to indicate that the three images from different phases have different shapes and sizes of lesions.
References
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556 (2014)
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
Xu, Y., Mo, T., Feng, Q., Zhong, P., Lai, M., Chang, E.I., et al.: Deep learning of feature representation with multiple instance learning for medical image analysis. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1626–1630. IEEE (2014)
Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013)
Miranda, C.M.N.R.D., Maranhão, C.P.D.M., Santos, C.J.J.D., Padilha, I.G., Farias, L.D.P.G.D., Rocha, M.S.D.: Bosniak classification of renal cystic lesions according to multidetector computed tomography findings. Radiol. Bras. 47(2), 115–121 (2014)
Lee, Y., Kim, N., Cho, K.-S., Kang, S.-H., Kim, D.Y., Jung, Y.Y., Kim, J.K.: Bayesian classifier for predicting malignant renal cysts on MDCT: early clinical experience. Am. J. Roentgenol. 193(2), W106–W111 (2009)
Curry, N.S., Cochran, S.T., Bissada, N.K.: Cystic renal masses: accurate Bosniak classification requires adequate renal CT. Am. J. Roentgenol. 175(2), 339–342 (2000)
Soares, J.V., Leandro, J.J., Cesar Jr., R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D gabor wavelet and supervised classification. IEEE Trans. Med. Imaging 25(9), 1214–1222 (2006)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)
Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1915–1929 (2013)
Lin, M., Chen, Q., Yan, S.: Network in network, arXiv preprint arXiv:1312.4400 (2013)
Kyrki, V., Kamarainen, J.-K., Kälviäinen, H.: Simple gabor feature space for invariant object recognition. Pattern Recognit. Lett. 25(3), 311–318 (2004)
Yang, M., Zhang, L.: Gabor feature based sparse representation for face recognition with gabor occlusion dictionary. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316, pp. 448–461. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Lee, M., Lee, H., Oh, J., Lee, H.J., Kim, S.H., Kwak, N. (2016). Unregistered Bosniak Classification with Multi-phase Convolutional Neural Networks. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9950. Springer, Cham. https://doi.org/10.1007/978-3-319-46681-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-46681-1_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46680-4
Online ISBN: 978-3-319-46681-1
eBook Packages: Computer ScienceComputer Science (R0)