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Abstract. The backpropagation algorithm for calculating gradients has
been widely used in computation of weights for deep neural networks
(DNNs). This method requires derivatives of objective functions and has
some difficulties finding appropriate parameters such as learning rate. In
this paper, we propose a novel approach for computing weight matrices
of fully-connected DNNs by using two types of semi-nonnegative matrix
factorizations (semi-NMFs). In this method, optimization processes are
performed by calculating weight matrices alternately, and backpropaga-
tion (BP) is not used. We also present a method to calculate stacked
autoencoder using a NMF. The output results of the autoencoder are
used as pre-training data for DNNs. The experimental results show that
our method using three types of NMFs attains similar error rates to the
conventional DNNs with BP.

1 Introduction

Deep neural networks (DNNs) attracted a great deal of attention for their high
efficiency in various fields, such as speech recognition, image recognition, ob-
ject detection, materials discovery. By using a backpropagation (BP) technique
proposed by Rumelhart, et al. [15], computational performance is improved for
training multilayer neural networks. However, learning often takes a long time
to converge, and it may fall into a local minimum. Bengio, et al. [1] proposed
a method to improve general performance by pre-training with an autoencoder.
Moreover, selection of appropriate learning rates [12] and restriction of weights
as dropout [16] have also used to minimize the expected error. Hinton, et al.
discussed initialization of weights in [6].

Neural networks have variations such as fully-connected networks, convolu-
tional networks and recurrent networks. LeCun, et al. [12] showed that convo-
lutional neural networks attain high efficiency for image recognition. In DNNs,
activation functions are used to attain nonlinear properties. Recently, the recti-
fied linear function (ReLU) [5, 13] has often been used.

Feedforward neural networks are computed by multiplying weight matrices
and input matrices. Thus, the main computations are matrix–matrix multipli-
cations (GEMM), and accelerators such as GPUs are employed to obtain high
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performance [2]. However, a large computational cost of neural networks is still
a problem.

In this paper, we propose a novel computing method for fully-connected
DNNs that uses two types of semi-nonnegative matrix factorizations (semi-
NMFs). In this method, optimization processes are performed by calculating
weight matrices alternately, and BP is not used. We also present a method to
calculate a stacked autoencoder using a NMF [11,14]. The output results of the
autoencoder are used as pre-training data for DNNs.

In the presented method, computations are represented by matrix–matrix
computations, and accelerators such as GPUs and MICs can be employed like
in BP computations. In BP computations, mini-batches are used to avoid stag-
nations of the optimization precess. The use of small mini-batch sizes decreases
matrix sizes and gains reductions in computations. The presented method also
uses partitioned matrices; however, the matrix size is larger than that of con-
ventional BP, and we expect high performance.

This paper is organized as follows. In Section 2, we review the conventional
method of computing DNNs. In Section 3, we present a method for computing
weights in DNNs using two types of semi-NMFs. We also present a method to
calculate a stacked autoencoder using NMF. In Section 4, we show some exper-
imental results of our proposed approach. Section 5 presents our conclusions.

We use MATLAB colon notations throughout. Moreover, let A = {aij} ∈
R

m×n, then A ≥ 0 denotes that all entries are nonnegative: aij ≥ 0.

2 Computation of deep neural networks

Let nin, nout,m be sizes of input and output units and the training data, respec-
tively. Moreover, let X ∈ R

nin×m and Y ∈ R
nout×m be input and output data.

Using a weight matrix W ∈ R
nout×nin and a bias vector b ∈ R

nout , the objective
function of one layer of neural networks can be written as

E(W, b, X, Y ) = D
(
Y, f(WX + beT)

)
+ h(W, b),

where D(·, ·) is a divergence function, e = [1, 1, . . . , 1]T ∈ R
m, f(U) is an activa-

tion function and h(W, b) is a regularization term. There are several activation
functions such as sigmoid functions like the logistic function and the hyperbolic
tangent function. Recently, rectified linear unit (ReLU) has been widely used.

The objective function of DNNs with d − 1 hidden units of size ni, i =
1, 2, . . . , d− 1 is written as

E(W1, . . . ,Wd, b1, . . . , bd, X, Y )

= D
(
Y,Wdf(Wd−1 · · · f(W1X + b1e

T) · · ·+ bd−1e
T) + bde

T
)

+ h(W1, . . . ,Wd, b1, . . . , bd). (1)

Here, Wi ∈ R
ni×ni−1 , bi ∈ R

ni−1 , n0 = nin, nd = nout. BP algorithms, which
are based on the gradient descent method using derivatives, are one of the most
standard algorithms used to minimize the objective function.
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Algorithm 1 The basic concept of the proposed method

1: Set initial guesses W
(0)
1 ,W

(0)
2 , . . . ,W

(0)
d

2: for k = 1, 2, . . . do:

3: for i = d, d− 1, . . . , 1 do:

4: Minimize (approx.) E
(k)
i

(Wi, X, Y ) for Wi with an initial guess W
(k−1)
i

,

and get W
(k)
i

5: end for

6: end for

3 An alternating optimization method based on

nonnegative matrix factorization

In this paper, we consider solving the following minimization problem

min
W1,...,Wd

E(W1, . . . ,Wd, X, Y ), (2)

where the objective function simplifies the objective function (1) using the square
error of DNNs and is defined by

E(W1, . . . ,Wd, X, Y ) :=
1

2
‖Y −Wdf(Wd−1 · · · f(W1X) · · · )‖2F, (3)

where ‖ · ‖F is the Frobenius norm. Here, the activation function f(U) is set as
ReLU.

The basic concept of our algorithm to solve (2) is an alternating optimization
that (approximately) optimizes each weight matrix Wi for i = d, d−1, . . . , 1, one

by one. Let W
(0)
1 ,W

(0)
2 , . . . ,W

(0)
d be initial guesses of W1, . . . ,Wd, respectively.

An autoencoder to set the initial guesses will be discussed in Section 4. In each
iteration k, we also define objective functions

E
(k)
i (Wi, X, Y ) := E(W

(k−1)
1 , . . . ,W

(k−1)
i−1 ,Wi,W

(k)
i+1, . . . ,W

(k)
d , X, Y ),

as for the i-th weight matrix Wi. Then, we (approximately) solve the minimiza-
tion problems

W
(k)
i = argmin

Wi

E
(k)
i (Wi, X, Y )

for i = d, d − 1, . . . , 1. The basic concept of our proposed method is shown in
Algorithm 1.

Let matrices Z
(k)
i ∈ R

ni×m be defined as

Z
(k)
0 := X,

Z
(k)
i := f(W

(k)
i f(W

(k)
i−1 · · · f(W

(k)
1 X) · · · )), i = 1, 2, . . . , d− 1.

Then, in what follows, we derive our alternating optimization algorithm using
semi-NMF [3] and nonlinear semi-NMF.
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3.1 Optimization for Wd using semi-NMF

Using the matrix Z
(k−1)
d−1 , the objective function for the weight matrix Wd is

rewritten as

E
(k)
d (Wd, X, Y ) =

1

2
‖Y −WdZ

(k−1)
d−1 ‖2F.

Here, we note that Z
(k−1)
d−1 ≥ 0 from the definition of Z

(k−1)
i . Therefore, we

can obtain W
(k)
d and Ẑ

(k)
d−1 by (approximately) solving nonnegative constraint

minimization problem of the form

[W
(k)
d , Ẑ

(k)
d−1] = arg min

Wd,Zd−1

‖Y −WdZd−1‖F, s.t. Zd−1 ≥ 0, (4)

using initial guesses W
(k−1)
d , Z

(k−1)
d−1 . This minimization problem is known as

semi-NMF.

3.2 Optimization for Wi, i = d− 1, . . . , 1 using nonlinear semi-NMF

From the definition of Z
(k−1)
i , we expect

Ẑ
(k)
d−1 ≈ f(Wd−1Zd−2) (5)

to minimize the objective function (3). Then, we consider (approximately) solv-
ing the minimization problem

[W
(k)
i , Ẑ

(k)
i−1] = arg min

Wi,Zi−1

‖Ẑ
(k)
i − f(WiZi−1)‖F, s.t. Zi−1 ≥ 0 (6)

forWi with i = d−1, d−2, . . . , 1. This minimization problem (6) is a nonnegative
constraint minimization problem like (4). However, (6) has a nonlinear activation
function. In this paper, we call this problem nonlinear semi-NMF.

In order to solve this nonlinear semi-NMF, we introduce an alternating min-
imization algorithm that minimizes nonlinear least squares problems

min
Wi

‖Ẑ
(k)
i − f(WiZ

(k−1)
i−1 )‖F (7)

and

min
Zi−1≥0

‖Ẑ
(k)
i − f(W

(k)
i Zi−1)‖F, (8)

one by one. Here, we note that (8) has a nonnegative constraint on Zi. We also
note that, for i = 1, we do not require a solution of (8), because Z0 = X . The
nonlinear least squares problems (7) and (8) are solved by stationary iteration-
like methods as shown in Algorithms 2 and 3, where A† is a pseudo-inverse
of A. In practice, the pseudo-inverse of A is approximated using a low-rank
approximation of A.
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Algorithm 2 An iteration method for solving nonlinear least squares minX ‖B−
f(XA)‖F

1: Set initial guess X0 and parameter ω
2: for s = 0, 1, . . . do:

3: Rs = B − f(XsA)
4: Xs+1 = Xs + ωRsA

†

5: end for

Algorithm 3 An iteration method for solving nonnegative constrain nonlinear
least squares minX≥0 ‖B − f(AX)‖F

1: Set initial guess X0 and parameter ω
2: for s = 0, 1, . . . do:

3: Rs = B − f(AXs)
4: Xs+1 = f(Xs + ωA†Rs)
5: end for

3.3 An alternating optimization method

Using semi-NMF (4) and nonlinear semi-NMF (5), the algorithm of the pro-
posed method is summarized in Algorithm 4. In practice, the input data X

is approximated using a low-rank approximation based on the singular value
decomposition:

X = [U1, U2]

[
Σ1

Σ2

] [
V T
1

V T
2

]
≈ U1Σ1V

T
1 .

Here, we assume that all hidden units have almost the same size: n ≈ ni, then
the computational cost of the proposed method is O(mn2 + dn3).

The proposed method can also use the mini-batch technique. Let Xℓ :=
X(:,Jℓ) be a submatrix of the input data X corresponding to each mini-batch,
where Jℓ is the index set in the mini-batch. Then, in order to use the mini-batch
technique for the proposed method, we need to compute the low-rank approx-
imation of Xℓ ≈ Uℓ,1Σℓ,1V

T
ℓ,1, in each iteration. We can reduce the required

computational cost by reusing the results of the low-rank approximation of X
as follows:

X(:,Jℓ) ≈ Uℓ,1Σℓ,1V
T
ℓ,1 ≈ U1Σ1V1(Jℓ, :)

T.

Other improvement techniques used for BP are also expected to improve the
performance of the proposed method.

4 An alternating optimization-based stacked autoencoder

using NMF

In this section, we propose an alternating optimization-based stacked autoen-

coder using NMF for computing initial guesses W
(0)
i of the proposed method
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Algorithm 4 A proposed method

1: Set initial guess W
(0)
1 ,W

(0)
2 , . . . ,W

(0)
d

2: for k = 1, 2, . . . do:

3: Solve (approx.) semi-NMF (4)

with initial guesses W
(k−1)
d

, Z
(k−1)
d−1 and get W

(k)
d

, Ẑ
(k)
d−1

4: for i = d− 1, . . . , 2 do:

5: Solve (approx.) nonlinear LSQ (7) by Algorithm 2

with an initial guess W
(k−1)
i

, and get W
(k)
i

6: Solve (approx.) nonnegative constrain nonlinear LSQ (8) by Algorithm 3

with an initial guess Z
(k−1)
i−1 , and get Ẑ

(k)
i−1

7: end for

8: Solve (approx.) nonlinear LSQ (7) for i = 1 by Algorithm 2

with an initial guess W
(k−1)
1 , and get W

(k)
1

9: Set Z
(k)
i

for i = 1, 2, . . . , d− 1
10: end for

Algorithm 5 A proposed stacked autoencoder

1: for i = 1, 2, . . . , d− 1 do:

2: Set initial guess W̃
(0)
i

, Z
(0)
i

3: for k = 1, 2, . . . , itermax do:

4: Solve (approx.) NMF (9) with initial guesses W̃
(k−1)
i

, Z
(k−1)
i

, and get

W̃
(k)
i

, Ẑ
(k)
i

5: Solve (approx.) nonlinear LSQ minWi
‖Ẑ

(k)
i

− f(WiZi−1)‖F by Algorithm 2

with initial guess W
(k−1)
i

, and get W
(k)
i

6: Set Z
(k)
i

= f(W
(k)
i

Zi−1)
7: end for

8: end for

(Algorithm 4). Let Ẑ0 = X . Then, for the stacked autoencoder, we compute the

initial guesses W
(0)
i by (approximately) minimizing

min
Wi,W̃i

‖Ẑi−1 − W̃if(WiZi−1)‖F

for i = 1, 2, . . . , d− 1 like as for the DNNs. Each minimization problem is solved
by NMF as shown below

[W̃i, Ẑi] = arg min
W̃i,Zi≥0

‖Ẑi−1 − W̃iZi‖F (9)

and Algorithm 2 is used to solve the nonlinear least squares problem as

Wi = min
Wi

‖Ẑi − f(WiZi−1)‖F. (10)

By solving (9) and (10) alternatily, the algorithm for the proposed stacked au-
toencoder is summarized by Algorithm 5.
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Fig. 1: Convergence history of the proposed method and BP with [1000-500]
hidden units for MNIST and CIFAR10.

5 Performance evaluations

In this section, we evaluate the performance of the proposed method (Algo-
rithm 4) using the stacked autoencoder (Algorithm 5) for fully-connected DNNs
for MNIST [10] and CIFAR10 [8]. There are several techniques for improving the
performance of BP such as affine/elastic distortions and denoising autoencoder.
These techniques are also expected to improve the performance of our algorithm.
Therefore, in this section, we just make a comparison with a simple BP.

For the proposed method, the number of iterations of the autoencoder and
the LSQs and the threshold of the low-rank approximation of the input data X

were set as (5, 10, 4.0× 10−2) for MNIST and (20, 25, 5.0× 10−3) for CIFAR10,
respectively. The size of the mini-batches was set as 5000 and the autoencoder
was computed using only 5000 random samples. For optimizing parameters of
BP, we used ADAM optimizer [7]. For ADAM optimizer, initial learning rates
for the stacked autoencoder and for the fine tuning were set as (10−3, 10−3) for
MNIST and (5.0× 10−4, 10−3) for CIFAR10, respectively. Other parameters β1,
β2 and ε of ADAM were set as the default parameters of TensorFlow. We used
the normalized initialization [4] for initial guesses of the stacked autoencoder.
The size of the mini-batches was set as 100 and the autoencoder was computed
using only 5000 random samples.

The performance evaluations were carried out using double precision arith-
metic on Intel(R) Xeon(R) CPU E5-2667 v3 (3.20GHz). The proposed method
was implemented in MATLAB and the BP was implemented using Tensor-
Flow [17].

Fig. 1 shows the convergence history of the proposed method and BP with
[1000-500] hidden units for MNIST and CIFAR10. Table 1 shows the 95% con-
fidence interval of the error rate and the computation time of 10 epoch of both
methods with several hidden units for MNIST.
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Table 1: The 95% confidence interval of the error rate and the computation time
of 10 epoch of the proposed method (MATLAB) and BP (TensorFlow) with
several hidden units for MNIST.

BP Proposed
hidden units Error rate [%] time Error rate [%] time

train data test data [sec.] train data test data [sec.]

500 0.30 ± 0.014 1.77 ± 0.03 153 3.68 ± 0.043 3.73 ± 0.09 99
1000-500 0.06 ± 0.007 1.39 ± 0.08 330 0.04 ± 0.004 1.50 ± 0.06 310

1500-1000-500 0.32 ± 0.086 1.90 ± 0.15 739 0.01 ± 0.004 1.35 ± 0.03 737
2000-1500-1000-500 0.48 ± 0.132 1.84 ± 0.18 1589 0.00 ± 0.001 1.29 ± 0.04 1581

These experimental results show that our method attains a similar error rate,
for several hidden units, as conventional DNNs with BP. Specifically, the pro-
posed method achieves better error rates with deeper hidden units. Moreover, the
proposed method needs a smaller computation time for the stacked autoencoder
and almost the same computation time for the fine tuning.

6 Conclusions

In this paper, we proposed an alternating optimization algorithm for computing
weight matrices of fully-connected DNNs by using the semi-NMF and the nonlin-
ear semi-NMF. We also presented a method to calculate a stacked autoencoder
by using NMF. The experimental results showed that our method using NMF
attains a similar error rate and a similar computation time to conventional DNNs
with BP. Almost the all computations of the proposed method are represented
by matrix–matrix computations, and accelerators such as GPUs and MICs are
employed like in BP computations. The proposed method also uses mini-batch
technique; however, the matrix size is larger than that of conventional BP. There-
fore, we expect that the proposed method achieves high performance on recent
computational environments.

For future work, we will consider a bias vector, sparse regularizations and
other activation functions. Moreover, we will extend our algorithm to convolu-
tional neural networks. We will also consider parallel computation implementa-
tion and evaluate the performance in recent parallel environments.
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