Abstract
We present a new deep neural network architecture, motivated by sparse random matrix theory that uses a low-complexity embedding through a sparse matrix instead of a conventional stacked autoencoder. We regard autoencoders as an information-preserving dimensionality reduction method, similar to random projections in compressed sensing. Thus, exploiting recent theory on sparse matrices for dimensionality reduction, we demonstrate experimentally that classification performance does not deteriorate if the autoencoder is replaced with a computationally-efficient sparse dimensionality reduction matrix.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)
Hinton, G.E., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)
Candes, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)
Candes, E., Tao, T.: Near optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)
Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. Contemp. Math. 26, 189–206 (1984)
Baraniuk, R.G., Davenport, M., DeVore, R., Wakin, M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28(3), 253–263 (2008)
Baraniuk, R.G., Michael, B.W.: Random projections of smooth manifolds. Found. Comput. Math. 9(1), 51–77 (2009)
Berinde, R., Indyk, P.: Sparse recovery using sparse random matrices. CSAIL Technical report, MIT-CSAIL-TR-2008-001 (2008)
Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1999)
Wang, W., Wainwright, M.J., Ramchandran, K.: Information-theoretic limits on sparse recovery: dense versus sparse measurement matrices. Technical report, Department of Statistics, UC, Berkeley, May 2008
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Matsumoto, W., Hagiwara, M., Boufounos, P.T., Fukushima, K., Mariyama, T., Xiongxin, Z. (2016). A Deep Neural Network Architecture Using Dimensionality Reduction with Sparse Matrices. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9950. Springer, Cham. https://doi.org/10.1007/978-3-319-46681-1_48
Download citation
DOI: https://doi.org/10.1007/978-3-319-46681-1_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46680-4
Online ISBN: 978-3-319-46681-1
eBook Packages: Computer ScienceComputer Science (R0)