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Abstract. Accurately predicting the outcome of cancer therapy is valu-
able for tailoring and adapting treatment planning. To this end, features
extracted from multi-sources of information (e.g., radiomics and clinical
characteristics) are potentially profitable. While it is of great interest to
select the most informative features from all available ones, small-sized
and imbalanced dataset, as often encountered in the medical domain,
is a crucial challenge hindering reliable and stable subset selection. We
propose a prediction system primarily using radiomic features extracted
from FDG-PET images. It incorporates a feature selection method based
on Dempster-Shafer theory, a powerful tool for modeling and reasoning
with uncertain and/or imprecise information. Utilizing a data rebalanc-
ing procedure and specified prior knowledge to enhance the reliability
and robustness of selected feature subsets, the proposed method aims to
reduce the imprecision and overlaps between different classes in the se-
lected feature subspace, thus finally improving the prediction accuracy. It
has been evaluated by two clinical datasets, showing good performance.

1 Introduction

Accurate outcome prediction prior to or even during cancer therapy is of great
clinical value. It benefits the adaptation of more effective treatment planning for
individual patient. With the advances in medical imaging technology, radiomic-
s [1], referring to the extraction and analysis of a large amount of quantitative
image features, provides an unprecedented opportunity to improve personalized
treatment assessment. Positron emission tomography (PET), with the radio-
tracer fluoro-2-deoxy-D-glucose (FDG), is one of the important and advanced
imaging tools generally used in clinical oncology for diagnosis and staging. The
functional information provided by FDG-PETs has also emerged to be predic-
tive of the pathologic response of a treatment in some types of cancers, such as
lung and esophageal tumors [10]. Abounding radiomic features have been stud-
ied in FDG-PETs [3], which include standardized uptake values (SUVs), e.g.,
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Fig. 1. Protocol of the prediction system.

SUVmax, SUVpeak and SUVmean, to describe metabolic uptakes in a volume of
interest (VOI), and metabolic tumor volume (MTV) and total lesion glycolysis
(TLG) to describe metabolic tumor burdens. Apart from SUV-based features,
some complementary characterization of PET images, e.g., texture analysis, may
also provide supplementary knowledge associated with the treatment outcome.
Although the quantification of these radiomic features has been claimed to have
discriminant power [1], the solid application is still hampered by some practical
difficulties: (i) uncertainty and inaccuracy of extracted radiomic features caused
by noise and limited resolution of imaging systems, by the effect of small tumour
volumes, and also by the lack of a priori knowledge regarding the most discrim-
inant features; (ii) small-sized dataset often encountered in the medical domain,
which results in a high risk of over-fitting with a relatively high-dimensional
feature space; (iii) skewed dataset where training samples are originated from
classes of remarkably distinct sizes, thus usually leading to poor performance for
classifying the minority class.

The challenge is to robustly select an informative feature subset from un-
certain, small-sized, and imbalanced dataset. To learn efficiently from noisy and
high overlapped training set, Lian et al. proposed a robust feature subset selec-
tion method, i.e., EFS [11], based on the Dempster-Shafer Theory (DST) [13],
a powerful tool for modeling and reasoning with uncertain and/or imprecise
knowledge. EFS quantifies the uncertainty and imprecision caused by different
feature subsets; then, attempts to find a feature subset leading to both high
classification accuracy and small overlaps between different classes. While it has
shown competitive performance as compared to conventional methods, the in-
fluence of imbalanced data is still left unsolved; moreover, the loss function used
in EFS can also be improved to reduce method’s complexity.

We propose a new framework for predicting the outcome of cancer therapy.
Input features are extracted from multi-sources of information, which include
radiomics in FDG-PET images, and clinical characteristics. Then, as a main
contribution of this paper, EFS proposed in [11] is comprehensively improved to
select features from uncertain, small-sized, and imbalanced dataset. The protocol
of the proposed prediction system is shown in Fig. 1, which will be described in
more detail in upcoming sections.



2 Robust Outcome Prediction with FDG-PET Images

The prediction system is learnt on a dataset {(Xi, Yi)}ni=1 for N different pa-
tients, where vector Xi consists of V input features, while Yi denotes already
known treatment outcome. Since Yi in our applications only has two possibilities
(e.g., recurrence versus no-recurrence), the set of possible classes is defined as
Ω = {ω1, ω2}. It is worth noting that this prediction system can also deal with
multi-class problems.

2.1 Feature Extraction

To extract features, images acquired at different time points are registered to
the image at initial staging via a rigid registration method. The VOIs around
tumors are cuboid bounding boxes manually delineated by experienced physi-
cians. Five types of SUV-based features are calculated from the VOI, namely
SUVmin, SUVmax, SUVpeak, MTV and TLG. To characterize tumor uptake het-
erogeneity, the Gray Level Size Zone Matrix (GLSZM) [16] is adopted to extract
eleven texture features. Since the temporal changes of these features may also
provide discriminant value, their relative difference between the baseline and the
follow-up PET acquisitions is calculated as additional features. Patients’ clini-
cal characteristics can also be included as complementary knowledge if they are
available. The number of extracted features is roughly between thirty to fifty.

2.2 Feature Selection

In this part, EFS [11] is comprehensively improved, which is denoted as REF-
S for simplicity. As compared to EFS, REFS incorporates a data rebalancing
procedure and specified prior knowledge to enhance the robustness of selected
features on small-sized and imbalanced data. Moreover, to reduce method’s com-
plexity, the loss function used in EFS is simplified without loss of effectiveness.
Prior Knowledge: considering that SUV-based features have shown great sig-
nificance for assessing the response of treatment [12], we incorporate this prior
knowledge in REFS to guide feature selection. More specifically, RELIEF [9] is
used to rank all SUV-based features. Then, the top SUV-based feature is includ-
ed in REFS as a must be selected element of the desired feature subset. This
added constraint drives REFS into a confined searching space. By decreasing the
uncertainty caused by the scarcity of learning samples, it ensures more robust
feature selection on small-sized datasets, thus increasing prediction reliability.
Data Rebalancing: pre-sampling is a common approach for imbalanced learn-
ing [8]. As an effective pre-sampling method which can generate artificial mi-
nority class samples, adaptive synthetic sampling (ADASYN) [8] is adopted in
REFS to rebalance data for feature selection. Such as the example shown in
Fig. 2, the key idea of ADASYN is to adaptively simulate samples according to
the distribution of the minority class samples, where more instances are gen-
erated for the minority class samples that have higher difficulty in learning.
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Fig. 2. Data rebalancing by ADASYN: (a) o-
riginal data with two input features random-
ly selected from the lung tumor dataset (Sec-
tion 3); (b) and (c) are two independent simu-
lations, where more synthetic (yellow) instances
have been generated for the minority class (cyan)
samples which have higher difficulty in learning
(on the boundary). However, due to the random
nature, no points has been generated for minor-
ity class samples within the orange circle in (b).

However, due to the random
nature of the rebalancing pro-
cedure, and also with a lim-
ited number of training sam-
ples, the rebalanced dataset can
not always ensure that instances
hard to learn are properly tack-
led (e.g., Fig. 2 (b)). There-
fore, ADASYN is totally execut-
ed B (equals 5 in our experimen-
t) times to provide B rebalanced
training datasets. REFS is then
executed with them to obtain B
feature subsets. The final output
is determined as the most fre-
quently subset that occurred a-
mong the B independent actions.
Robust EFS (REFS): similar to [11], we search for a qualified feature subset
according to three requirements: (i) high classification accuracy; (ii) low impre-
cision and uncertainty, i.e., small overlaps between different classes; (iii) sparsity
to reduce the risk of over-fitting. To learn such a feature subset, the dissimilar-
ity between any feature vectors Xi and Xj is defined as a weighted Euclidean

distance, i.e., d2i,j =
∑V
p=1 λpd

2
ij,p, where dij,p = |xi,p − xj,p| represents the dif-

ference between the pth feature. Features are selected via the value of the binary
vector Λ = [λ1, . . . , λV ]t, where the pth feature is selected when λp = 1.

We successively regard each training instance Xi as a query object. In the
framework of DST, other samples in the training pool can be considered as inde-
pendent items of evidence that support different hypotheses regarding the class
membership of Xi. The evidence offered by (Xj , Yj = ωq), where j 6= i and
q ∈ {1, 2}, asserts that Xi also belongs to ωq. According to [11], this piece of
evidence is partially reliable, which can be quantified as a mass function [13],
i.e., mi,j({ωq}) + mi,j(Ω) = 1, where mi,j({ωq}) = exp

(
−γqd2i,j

)
, and γq re-

lates to the mean distance in the same class. Quantity mi,j({ωq}) denotes a
degree of belief attached to the hypothesis ”Yi ∈ {ωq}”; similarly, mi,j(Ω) is
attached to ”Yi ∈ Ω”, i.e., the degree of ignorance. The precision of mi,j is in-
versely proportional to d2i,j : when d2i,j is too large, it becomes totally ignorant
(i.e., mi,j(Ω) ≈ 1), which provides little evidence regarding the class member-
ship of Xi. Hence, for each Xi, it is sufficient to just consider the mass func-
tions offered by the first K (with a large value, e.g., ≥ 10) nearest neighbors.
Let {Xi1 , . . . , XiK} be the selected training samples for Xi. Correspondingly,
{mi,i1 , . . . ,mi,iK} are K pieces of evidence taking into account.

In the framework of DST, beliefs are refined by aggregating different items
of evidence. A specific combination rule has been proposed in [11] to fuse mass
functions {mi,i1 , . . . ,mi,iK} for Xi. While it can lead to robust quantification
of data uncertainty and imprecision, accompanying tuning parameters increase



method’s complexity. To tackle this problem, this combination rule is replaced
by the conjunctive combination rule defined in the Transferable Belief Model
(TBM) [14], considering that the latter is a basic but robust rule for the fusion
of independent pieces of evidence. We assign {mi,i1 , . . . ,mi,iK} into two different
groups (Θ1 and Θ2) according to {Yi1 , . . . , YiK}. In each group Θq 6= ∅, mass

functions are fused to deduce a new mass function m
Θq

i without conflict:m
Θq

i ({ωq}) = 1−
∏p=1,...,K
Xip∈Θq

(
1− e−γqd

2
i,ip

)
,

m
Θq

i (Ω) =
∏p=1,...,K
Xip∈Θq

(
1− e−γqd

2
i,ip

)
;

(1)

while, when Θq is empty, m
Θq

i (Ω) = 1. After that, mΘ1
i and mΘ2

i are further
combined to obtain a global Mi regarding the class membership of Xi, namely

Mi({ωq}) = m
Θq

i ({ωq}) ·m
Θq̄

i (Ω),∀q ∈ {1, 2}, q̄ 6= q,

Mi(Ω) = mΘ1
i (Ω) ·mΘ2

i (Ω),

Mi(∅) = mΘ1
i ({ω1}) ·mΘ2

i ({ω2}).
(2)

Based on (1) and (2), Mi is determined by the weighted Euclidean distance, i.e,
a function of the binary vector Λ defining which features are selected. Quantity
Mi(∅) measures the conflict in the neighborhood of Xi. A large Mi(∅) means Xi

is locating in a high overlapped area in current feature subspace. Differently,
Mi(Ω) measures the imprecision regarding the class membership of Xi. A large
Mi(Ω) may indicate that Xi is isolated from all other samples. According to the
requirements of a qualified feature subset, the loss function with respect to Λ is

arg min
Λ

1

N

N∑
i=1

2∑
q=1

{Mi({ωq})− ti,q}2 +
1

N

N∑
i=1

{Mi(∅)2 +Mi(Ω)
2}+β||Λ||0. (3)

The first term is a mean squared error measure, where vector ti is a indicator of
the outcome label, with ti,q = δi,q if Yi = ωq. The second term penalizes feature
subsets that result in high imprecision and large overlaps between different class-
es. The last term, namely ||Λ||0 =

∑V
v=1 λv, forces the selected feature subset to

be sparse. Scalar β (≥ 0) is a hyper-parameter that controls the sparse penalty.
It can be tuned according to the training performance. A global optimization
method, namely the MI-LXPM [4], is utilized to minimize this loss function.

Finally, selected features are used to train a robust classifier, namely the
EK-NN classification rule [5], for predicting the outcome of cancer treatment.

3 Experimental Results

The proposed prediction system has been evaluated by two clinical datasets:
1) Lung Tumor Data: twenty-five patients with inoperable stage II-III non-small
cell lung cancer (NSCLC) treated with curative-intent chemo-radiotherapy were



Table 1. Feature selection and corresponding prediction performance evaluated by the
.632+ Bootstrapping. ”All” denotes the input feature space.

Lung Tumor Data
All RELIEF FAST SVMRFE KCS HFS EFS REFS

Robustness — 0.16 0.11 0.12 0.10 0.48 0.21 0.82
Accuracy 0.85 0.82 0.82 0.84 0.83 0.85 0.81 0.94

AUC 0.37 0.64 0.60 0.53 0.65 0.81 0.77 0.94
Subset size 52 7 10 5 29 3 4 4

Esophageal Tumor Data
All RELIEF FAST SVMRFE KCS HFS EFS REFS

Robustness — 0.33 0.61 0.31 0.29 0.32 0.44 0.74
Accuracy 0.74 0.69 0.74 0.74 0.69 0.74 0.77 0.83

AUC 0.63 0.66 0.63 0.75 0.66 0.71 0.75 0.82
Subset size 29 6 25 5 3 5 3 3

studied. All patients underwent FDG-PET scans at initial staging, after induc-
tion chemotherapy, and during the fifth week of radiotherapy. Totally 52 SUV-
based and GLSZM-based features were extracted. At one year after the end of
treatment, local or distant recurrence (majority) was diagnosed on 19 patients,
while no recurrence (minority) was reported on the remaining 6 patients.
2) Esophageal Tumor Data: thirty-six patients with esophageal squamous cell
carcinomas treated with chemo-radiotherapy were studied. Since only PET/CT
scans at initial tumor staging were available, some clinical characteristics were
included as complementary knowledge. As the result, 29 SUV-based, GLSZM-
based, and patients’ clinical characteristics (gender, tumour stage and location,
WHO performance status, dysphagia grade and weight loss from baseline) were
gathered. At least one month after the treatment, 13 patients were labeled
disease-free (minority) when neither loco regional nor distant tumor recurrence
is detected, while the other 23 patients were disease-positive (majority).
Feature Selection & Prediction Performance: REFS was compared with

two univariate methods (RELIEF [9] and FAST [2]), and four multivariate meth-
ods (SVMRFE [7], KCS [18], HFS [12] and EFS [11]). Because of a limited
number of instances, all compared methods were evaluated by the .632+ Boot-
strapping [6], which ensures low bias and variance estimation. As a metric used
to evaluate the selection performance, the robustness of the selected feature sub-
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Fig. 3. Evaluating REFS, where
REFS+ denotes resutls obtained
without data rebalancing; while,
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Fig. 4. Feature selected on (a) lung and (b)
esophageal tumor datasets, respectively. Each
column represents a bootstrapping evaluation,
while the yellow points denote selected features.



sets was measured by the relative weighted consistency [15]. Its calculation is
based on feature occurrence statistics obtained from all iterations of the .632+
Bootstrapping. The value of the relative weighted consistency ranges between
[0, 1], where 1 means all selected feature subsets are approximately identical.
To assess the prediction performance after feature selection, Accuracy and AUC
were calculated. For all the compared methods except EFS, the SVM was chosen
as the default classifier; the EK-NN [5] classifier was used with EFS and REFS.

Setting the number of Bootstraps to 100, results obtained by all methods
are summarized in Table 1, where the input feature space is also presented as
the baseline for comparison. We can find that REFS is competitive as it led to
better performance than other methods on both two imbalanced datasets. The
significance of the specified prior knowledge and data rebalancing procedure for
REFS was also evaluated by successively removing them. Results obtained on the
lung tumor data are shown in Fig. 3, from which we can find that both of them
are important for improving the feature selection and prediction performance.
Analysis of Selected Feature Subsets: the indexes of features selected on
both datasets with respect to 100 different Bootstraps are summarized in Fig. 4.
For the lung tumor data, SUVmax during the fifth week of radiotherapy, and the
temporal change of three GLSZM-based features were stably selected; for the
esophageal tumor data, TLG at staging, and two clinical characteristics were
stably selected. It is worth noting that the SUV-based features selected by REFS
have also been proven to have significant predictive power in clinical studies,
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Fig. 5. The KM survival curves. The two
groups of patients are obtained by (a) clin-
ical validated predictor, and (b) features s-
elected by REFS.

e.g., the SUVmax during the fifth week
of radiotherapy has been clinically
validated in [17] for NSCLC; while,
the TLG (total lesion glycolysis) at
staging has also been validated in [10]
for oesophageal squamous cell carci-
noma. Therefore, we might say that
the feature subsets selected by REFS
are in consistent with existing clinical
studies; moreover, other kinds of fea-
tures included in each subset can pro-
vide complementary information for
these already validated predictors to
improve the prediction performance.
To support this analysis, on the e-
sophageal tumor data which has been

followed up in a long term up to five years, we drawn the Kaplan-Meier (KM)
survival curves obtained by the EK-NN classifier using, respectively, the feature
subset selected by REFS, and the clinically validated predictor (i.e., TLG at
tumor staging). Obtained results are shown in Fig. 5, in which each KM survival
curve demonstrates the fraction of patients in a classified group that survives
over time. As can be seen, using REFS (Fig. 5(b)), patients were better separated
as two groups with distinct survival rates than using only TLG (Fig. 5(a)).



4 Conclusion

In this paper, predicting the outcome of cancer therapy primarily based on FDG-
PET images has been studied. A robust method based on Dempster-Shafer The-
ory has been proposed to select discriminant feature subsets from small-sized
and imbalanced datasets containing noisy and high-overlapped inputs. The ef-
fectiveness of the proposed method has been evaluated by two real datasets.
The obtained results are in consistent with published clinical studies. The future
work is to validate the proposed method on more datasets with much higher
dimensional features. In addition, how to improve the stability of involved prior
knowledge should also be further studied.

References

1. Aerts, H.J., et al.: Decoding tumour phenotype by noninvasive imaging using a
quantitative radiomics approach. Nature Communications 5 (2014)

2. Chen, X., et al.: Fast: a ROC-based feature selection metric for small samples and
imbalanced data classification problems. In: KDD. pp. 124–132 (2008)

3. Cook, G.J., et al.: Radiomics in PET: principles and applications. Clinical and
Translational Imaging 2(3), 269–276 (2014)

4. Deep, K., et al.: A real coded genetic algorithm for solving integer and mixed
integer optimization problems. Appl. Math. Comput. 212(2), 505–518 (2009)

5. Denœux, T.: A K-nearest neighbor classification rule based on Dempster-Shafer
theory. IEEE TSMC 25(5), 804–813 (1995)

6. Efron, B., et al.: Improvements on cross-validation: the 632+ bootstrap method.
JASA 92(438), 548–560 (1997)

7. Guyon, I., et al.: Gene selection for cancer classification using support vector ma-
chines. Machine Learning 46(1-3), 389–422 (2002)

8. He, H., et al.: Learning from imbalanced data. IEEE TKDE 21(9), 1263–1284
(2009)

9. Kira, K., et al.: The feature selection problem: Traditional methods and a new
algorithm. In: AAAI. vol. 2, pp. 129–134 (1992)

10. Lemarignier, C., et al.: Pretreatment metabolic tumour volume is predictive of
disease-free survival and overall survival in patients with oesophageal squamous
cell carcinoma. Eur J Nucl Med Mol Imaging 41(11), 2008–2016 (2014)

11. Lian, C., et al.: An evidential classifier based on feature selection and two-step
classification strategy. Pattern Recognition 48(7), 2318–2327 (2015)

12. Mi, H., et al.: Robust feature selection to predict tumor treatment outcome. Arti-
ficial Intelligence in Medicine 64(3), 195–204 (2015)

13. Shafer, G.: A mathematical theory of evidence. Princeton University Press (1976)
14. Smets, P., et al.: The transferable belief model. Artif. Intell. 66(2), 191–234 (1994)
15. Somol, P., et al.: Evaluating stability and comparing output of feature selectors

that optimize feature subset cardinality. IEEE TPAMI 32(11), 1921–1939 (2010)
16. Thibault, G., et al.: Advanced statistical matrices for texture characterization:

application to cell classification. IEEE TBME 61(3), 630–637 (2014)
17. Vera, P., , et al.: FDG PET during radiochemotherapy is predictive of outcome

at 1 year in non-small-cell lung cancer patients: a prospective multicentre study
(RTEP2). Eur J Nucl Med Mol Imaging 41(6), 1057–1065 (2014)

18. Wang, L.: Feature selection with kernel class separability. IEEE TPAMI 30(9),
1534–1546 (2008)


