Abstract
Delay differential equations (DDEs) play an important role in the modeling of dynamic processes. Delays may arise in contemporary control schemes like networked distributed control and may cause deterioration of control performance, invalidating both stability and safety properties. This induces an interest in DDE especially in the area of modeling embedded control and formal methods for its verification. In this paper, we present an approach aiming at automatic safety verification of a simple class of DDEs against requirements expressed in a linear-time temporal logic. As requirements specification language, we exploit metric interval temporal logic (MITL) with a continuous-time semantics evaluating signals over metric spaces. We employ an interval-based Taylor over-approximation method to enclose the solution of the DDE. As the solution of the DDE gets represented as a timed state sequence in terms of the Taylor coefficients, we can effectively solve temporal-logic verification problems represented as time-bounded MITL formulae. We encode necessary conditions for their satisfaction as SMT formulae over polynomial arithmetic and use the iSAT3 SMT solver in its bounded model checking mode for discharging the resulting proof obligations, thus proving satisfaction of MITL specifications by the trajectories induced by a DDE. In contrast to our preliminary work in [34], we can verify arbitrary time-bounded MITL formulae, including nesting of modalities, rather than just invariance properties.
This research is funded by the Deutsche Forschungsgemeinschaft as part of the Research Training Group DFG GRK 1765 SCARE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
The corresponding prototype implementation of the interval Taylor over-approximation method for DDEs as well as some examples are available for download from https://github.com/liangdzou/isat-dde.
References
Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)
Babin, G., Aït-Ameur, Y., Nakajima, S., Pantel, M.: Refinement and proof based development of systems characterized by continuous functions. In: Li, X., Liu, Z., Yi, W. (eds.) SETTA 2015. LNCS, vol. 9409, pp. 55–70. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25942-0_4
Bellman, R., Cooke, K.L.: Differential-difference equations. Technical report R-374-PR, The RAND Corporation, Santa Monica, California, January 1963
Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliable Comput. 4(4), 361–369 (1998)
Butler, M.J., Abrial, J.-R., Banach, R.: Modelling and refining hybrid systems in Event-B and Rodin. In: Petre, L., Sekerinski, E. (eds.) From Action Systems to Distributed Systems - The Refinement Approach, pp. 29–42. Chapman and Hall/CRC, Boca Raton (2016)
Chutinan, A., Krogh, B.H.: Computing polyhedral approximations to flow pipes for dynamic systems. In: Proceedings of the 37th International Conference on Decision and Control (CDC 1998) (1998)
Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000). doi:10.1007/10722167_15
Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: a direct SAT approach to hybrid systems. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 171–185. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88387-6_14
Fainekos, G.E., Girard, A., Pappas, G.J.: Temporal logic verification using simulation. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 171–186. Springer, Heidelberg (2006)
Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for finite state sequences in metric spaces. Technical report MS-CIS-06-05, Dept. of CIS, Univ. of Pennsylvania (2006)
Fort, J., Méndez, V.: Time-delayed theory of the neolithic transition in Europe. Phys. Rev. Lett. 82(4), 867 (1999)
Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Efficient solving of large non-linear arithmetic constraint systems with complex Boolean structure. J. Satisfiability, Boolean Model. Comput. - Special Issue on SAT/CP Integr. 1, 209–236 (2007)
Gao, S., Kong, S., Clarke, E.M.: Satisfiability modulo ODEs. In: Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, pp. 105–112. IEEE, 20–23 October 2013
Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)
Glass, L., Mackey, M.C.: From Clocks to Chaos: The Rhythms of Life. Princeton University Press, Princeton (1988)
Ikeda, K., Matsumoto, K.: High-dimensional chaotic behavior in systems with time-delayed feedback. Physica D 29(1–2), 223–235 (1987)
Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990)
Kupferschmid, S., Becker, B.: Craig interpolation in the presence of non-linear constraints. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 240–255. Springer, Heidelberg (2011)
Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for hybrid dynamics: the reachability problem. In: Kurzhanski, A.B., Varaiya, P. (eds.) New Directions and Applications in Control Theory. LNCIS, vol. 321, pp. 193–205. Springer, Heidelberg (2005)
Lakshmanan, M., Senthilkumar, D.V.: Dynamics of Nonlinear Time-Delay Systems. Springer, Heidelberg (2011)
Le Guernic, C., Girard, A.: Reachability analysis of linear systems using support functions. Nonlinear Anal. Hybrid Syst. 4(2), 250–262 (2010)
Lohner, R.: Einschließung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben. Ph.D. thesis, Fakultät für Mathematik der Universität Karlsruhe, Karlsruhe (1988)
Mackey, M.C., Glass, L., et al.: Oscillation and chaos in physiological control systems. Science 197(4300), 287–289 (1977)
McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45069-6_1
Moore, R.E.: Automatic local coordinate transformation to reduce the growth of error bounds in interval computation of solutions of ordinary differential equations. In: Ball, L.B. (ed.) Error in Digital Computation, vol. II, pp. 103–140. Wiley, New York (1965)
Neher, M., Jackson, K.R., Nedialkov, N.S.: On Taylor model based integration of ODEs. SIAM J. Numer. Anal. 45(1), 236–262 (2007)
Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: Proceedings of the 20th IEEE Symposium on Logic in Computer Science (LICS 2005), Chicago, IL, USA, pp. 188–197. IEEE Computer Society, 26–29 June 2005
Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer, Heidelberg (2008)
Scheiber, K.: iSAT3 Manual, April 2014
Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a SAT-solver. In: Hunt, W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 127–144. Springer, Heidelberg (2000). doi:10.1007/3-540-40922-X_8
Stauning, O.: Automatic validation of numerical solutions. Ph.D. thesis, Technical University of Denmark, Lyngby (1997)
Szydłowski, M., Krawiec, A.: The stability problem in the kaldor-kalecki business cycle model. Chaos, Solitons & Fractals 25(2), 299–305 (2005)
Szydłowski, M., Krawiec, A., Toboła, J.: Nonlinear oscillations in business cycle model with time lags. Chaos, Solitons & Fractals 12(3), 505–517 (2001)
Zou, L., Fränzle, M., Zhan, N., Nazier Mosaad, P.: Automatic verification of stability and safety for delay differential equations. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015, Part II. LNCS, vol. 9207, pp. 338–355. Springer, Heidelberg (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Nazier Mosaad, P., Fränzle, M., Xue, B. (2016). Temporal Logic Verification for Delay Differential Equations. In: Sampaio, A., Wang, F. (eds) Theoretical Aspects of Computing – ICTAC 2016. ICTAC 2016. Lecture Notes in Computer Science(), vol 9965. Springer, Cham. https://doi.org/10.1007/978-3-319-46750-4_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-46750-4_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46749-8
Online ISBN: 978-3-319-46750-4
eBook Packages: Computer ScienceComputer Science (R0)