Skip to main content

Abstract

Sensor networks deployed in remote and hard to access locations often require regular maintenance to replace or charge batteries as solar panels are sometimes impractical. In this chapter, we develop an Unmanned Aerial Vehicle (UAV) that can fly to remote locations to charge sensors using magnetic resonant wireless power transfer. We discuss the challenges of using UAVs to charge sensors wirelessly. We then present the design of a lightweight system that can be carried by a UAV as well as design a localization sensor and algorithm to allow the UAV to precisely align itself with the receiver by sensing the induced field. We also develop a number of algorithms to address the question of which sensors should be charged given a network of sensors. Finally, we experimentally verify algorithms that leverage the sensor network’s ability to adapt internal communication and energy consumption patterns to optimize UAV-based wireless charging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achtelik, M.C., Stumpf, J., Gurdan, D., Doth, K.M.: Design of a flexible high performance quadcopter platform breaking the mav endurance record with laser power beaming. In: International Conference on Intelligent Robots and Systems (IROS), pp. 5166–5172 (2011)

    Google Scholar 

  2. Altug, E., Ostrowski, J., Taylor, C.: Quadrotor control using dual camera visual feedback. Int. Conf. Robot. Autom. (ICRA) 3, 4294–4299 (2003)

    Google Scholar 

  3. Bachrach, A., He, R., Roy, N.: Autonomous flight in unknown indoor environments. Int. J. Micro Air Veh. 1(4), 217–228 (2009)

    Article  Google Scholar 

  4. Basha, E., Eiskamp, M., Johnson, J., Detweiler, C.: Uav recharging opportunities and policies for sensor networks. Int. J. Distrib. Sens. Netw. 10 (2015)

    Google Scholar 

  5. Bishop, O.: Electronics—Circuits and Systems. Taylor & Francis (2012)

    Google Scholar 

  6. Brown, W.C.: The history of power transmission by radio waves. Trans. Microw. Theory Tech. 32(9), 1230–1242 (1984)

    Article  Google Scholar 

  7. Cliff, O.M., Fitch, R., Sukkarieh, S., Saunders, D.L., Heinsohn, R.: Online localization of radio-tagged wildlife with an autonomous aerial robot system. In: Proceedings of Robotics Science and Systems XI, pp. 13–17 (2015). http://www.roboticsproceedings.org/rss11/p42.pdf

  8. Coleri, S., Puri, A., Varaiya, P.: Power efficient system for sensor networks. In: International Symposium on Computers and Communication, pp. 837–842 (2003)

    Google Scholar 

  9. Deyle, T., Reynolds, M.S., Kemp, C.C.: Finding and navigating to household objects with UHF RFID tags by optimizing RF signal strength. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 2579–2586 (2014). doi:10.1109/IROS.2014.6942914

  10. Ergen, S.C., Varaiya, P.: Pedamacs: power efficient and delay aware medium access protocol for sensor networks. Trans. Mob. Comput. 5(7), 920–930 (2006)

    Article  Google Scholar 

  11. Feeney, L.M., Nilsson, M.: Investigating the energy consumption of a wireless network interface in an ad hoc networking environment. Conf. IEEE Comput. Commun. Soc. 3, 1548–1557 (2001)

    Google Scholar 

  12. Griffin, B.: Automated resonant wireless power transfer to remote sensors from an unmanned aerial vehicle. Master’s thesis, University of Nebraska—Lincoln, NE (2012)

    Google Scholar 

  13. Griffin, B., Detweiler, C.: Resonant wireless power transfer to ground sensors from a UAV. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA) (2012)

    Google Scholar 

  14. Grzonka, S., Grisetti, G., Burgard, W.: A fully autonomous indoor quadrotor. Trans. Rob. 28(1), 90–100 (2012)

    Article  Google Scholar 

  15. Honegger, D., Greisen, P., Meier, L., Tanskanen, P., Pollefeys, M.: Real-time velocity estimation based on optical flow and disparity matching. In: International Conference on Intelligent Robots and Systems (IROS), pp. 5177–5182 (2012)

    Google Scholar 

  16. Honegger, D., Meier, L., Tanskanen, P., Pollefeys, M.: An open source and open hardware embedded metric optical flow cmos camera for indoor and outdoor applications. In: International Conference on Robotics and Automation (IROS) (2013)

    Google Scholar 

  17. Hook, J.V., Tokekar, P., Isler, V.: Algorithms for cooperative active localization of static targets with mobile bearing sensors under communication constraints. IEEE Trans. Rob. 31(4), 864–876 (2015)

    Article  Google Scholar 

  18. Johnson, J., Basha, E., Detweiler, C.: Charge selection algorithms for maximizing sensor network life with UAV-based limited wireless recharging. In: Proceedings of IEEE International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP) (2013)

    Google Scholar 

  19. Karalis, A., Joannopoulos, J.D., Soljačić, M.: Efficient wireless non-radiative mid-range energy transfer. Ann. Phys. 323(1), 34–48 (2008)

    Article  Google Scholar 

  20. Kendoul, F., Fantoni, I., Nonami, K.: Optic flow-based vision system for autonomous 3d localization and control of small aerial vehicles. Robot. Auton. Syst. 57(6), 591–602 (2009)

    Article  Google Scholar 

  21. LAB, N.J.P.: The global differential gps system. Science

    Google Scholar 

  22. Leng, J.: Using a uav to effectively prolong wireless sensor network lifetime with wireless power transfer. Master’s thesis, University of Nebraska—Lincoln, NE (2014)

    Google Scholar 

  23. Lu, X., Wang, P., Niyato, D., Kim, D.I., Han, Z.: Wireless charging technologies: Fundamentals, standards, and network applications (2015)

    Google Scholar 

  24. Martinelli, F.: Robot localization using the phase of passive UHF-RFID Signals Under Uncertain Tag Coordinates. J. Intell. Robot. Syst. 1–17 (2015)

    Google Scholar 

  25. McSpadden, J.O., Mankins, J.C.: Space solar power programs and microwave wireless power transmission technology. Microwave Mag. 3(4), 46–57 (2002)

    Article  Google Scholar 

  26. Mittleider, A., Griffin, B., Detweiler, C.: Experimental analysis of a uav-based wireless power transfer localization system. In: Proceedings of International Symposium on Experimental Robotics (ISER) (2014)

    Google Scholar 

  27. Moore, J., Tedrake, R.: Magnetic localization for perching uavs on powerlines. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2700–2707. IEEE (2011)

    Google Scholar 

  28. Peng, Y., Li, Z., Zhang, W., Qiao, D.: Prolonging sensor network lifetime through wireless charging. In: RTSS, pp. 129–139 (2010)

    Google Scholar 

  29. Roundy, S., Steingart, D., Frechette, L., Wright, P., Rabaey, J.: Power sources for wireless sensor networks. In: Karl, H., Wolisz, A., Willig, A. (eds.) Wireless Sensor Networks. Lecture Notes in Computer Science, vol. 2920, pp. 1–17. Springer, Berlin Heidelberg (2004)

    Chapter  Google Scholar 

  30. Sample, A., Smith, J.R.: Experimental results with two wireless power transfer systems. In: Radio and Wireless Symposium, pp. 16–18 (2009)

    Google Scholar 

  31. Sample, A.P., Meyer, D.A., Smith, J.R.: Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. Trans. Industr. Electron. 58(2), 544–554 (2011)

    Article  Google Scholar 

  32. Seo, Y.S., Hughes, Z., Hoang, M., Isom, D., Nguyen, M., Rao, S., Chiao, J.C.: Investigation of wireless power transfer in through-wall applications. In: Microwave Conference Proceedings (APMC), pp. 403–405 (2012)

    Google Scholar 

  33. N.C.O. for Space-Based Positioning NavigationTiming, Global positioning system standard positioning service performance standard 4e. science

    Google Scholar 

  34. Tesla, N.: Apparatus for transmitting electrical energy (1914)

    Google Scholar 

  35. Tokekar, P., Bhadauria, D., Studenski, A., Isler, V.: A robotic system for monitoring carp in minnesota lakes. J. Field Robot. 27(6), 779789 (2010)

    Article  Google Scholar 

  36. Tong, B., Wang, G., Zhang, W., Wang, C.: Node reclamation and replacement for long-lived sensor networks. IEEE Trans. Parallel Distrib. Syst. 22(9), 1550–1563 (2011)

    Article  Google Scholar 

  37. Wang, J., Schluntz, E., Otis, B., Deyle, T.: A new vision for smart objects and the Internet of Things: mobile robots and long-Range UHF RFID sensor tags (2015). arXiv:1507.02373

  38. Weiss, S., Scaramuzza, D., Siegwart, R.: Monocular-slambased navigation for autonomous micro helicopters in gps-denied environments. J. Field Robot. 28(6), 854–874 (2011)

    Article  Google Scholar 

  39. Xie, L., Shi, Y., Hou, Y.T., Sherali, H.D.: Making sensor networks immortal: an energy-renewal approach with wireless power transfer. Trans. Networking 20(6), 1748–1761 (2012)

    Article  Google Scholar 

  40. Zhang, S., Wu, J., Lu, S.: Collaborative mobile charging for sensor networks. In: International Conference on Mobile Adhoc and Sensor Systems (MASS), pp. 84–92 (2012)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by NSF 1217400, NSF 1217428, and USDA-NIFA 2013-67021-20947.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrick Detweiler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Detweiler, C. et al. (2016). Unmanned Aerial Vehicle-Based Wireless Charging of Sensor Networks. In: Nikoletseas, S., Yang, Y., Georgiadis, A. (eds) Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-46810-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46810-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46809-9

  • Online ISBN: 978-3-319-46810-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics