Skip to main content

Abstract

Near-field-based wireless power transfer (WPT) technology is promising for many applications from consumer electronics to industrial automation. By utilizing resonant coupling, the power transfer can be made more flexible than conventional inductive WPT. However, the range is still limited. In this chapter, we report research work on near-field wireless power transfer (WPT) based on metamaterials-related ideas, aiming to extend the range and improve the flexibility of a WPT system. In the first part, we show that with a thin slab of metamaterial, the near-field coupling between two resonant coils can be enhanced; the power transfer efficiency between coils can also be greatly improved by the metamaterial. The principle of enhanced coupling with metamaterials will be discussed; the design process of metamaterial slabs for WPT will be introduced; experimental results on WPT efficiency improvement with metamaterials will also be presented. In the second part, inspired by metamaterials theory, we study the mutual coupling of an array of coupled resonators, and their application for WPT. We show that the range of WPT can be greatly extended with an array of coupled resonators. More importantly, the technology enables wireless power delivery to both static and mobile devices. The principle of this technology will be explained; analytical and numerical models will be introduced to estimate the performance of a WPT system based on an array of coupled resonators; methods for WPT optimization will be discussed and experimental results will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimokura, N., Kaya, N., Shinohara, M., Matsumoto, H.: Point-to-point microwave power transmission experiment. Electr. Eng. Jpn. 120(1), 33–39 (1997)

    Article  Google Scholar 

  2. Cota (http://www.ossia.com/cota/); Energous (http://www.energous.com/)

  3. Schuder, J.C., Stephenson, H.E., Townsend, J.F.: High-level electromagnetic energy transfer through a closed chest wall. Inst. Radio Eng. Int. Conv. Rec. 9, 119 (1961)

    Google Scholar 

  4. Low, Z.N., Chinga, R.A., Tseng, R., Lin, J.: Design and test of a high-power high-efficiency loosely coupled planar wireless power transfer system. IEEE Trans. Ind. Electron. 56, 1801 (2009)

    Article  Google Scholar 

  5. Elliott, G.A.J., Raabe, S., Covic, G.A., Boys, J.T.: Multiphase pickups for large lateral tolerance contactless power-transfer systems. ieee trans. ind. electron. 57, 1590 (2010)

    Article  Google Scholar 

  6. de Donaldson, N., Perlins, T.A.: Analysis of resonant coupled coils in the design of radio frequency transcutaneous links. Med. Biol. Eng. Comput. 21, 612 (1983)

    Google Scholar 

  7. Puers, R., Schuylenbergh, K.V., Catrysse, M., Hermans, B.: Wireless inductive transfer of power and data. In: Analog Circuit Design, p. 395. Springer (2006)

    Google Scholar 

  8. Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J.D., Fisher, P., Soljiacic, M.: Wireless power transfer via strongly coupled magnetic resonances. Science 317, 83 (2007)

    Article  MathSciNet  Google Scholar 

  9. Valtchev, S., Borges, B., Brandisky, K., Klaassens, J.B.: Resonant contactless energy transfer with improved efficiency. IEEE Trans. Power Electron. 24(3), 685–699 (2009)

    Article  Google Scholar 

  10. Cannon, B.L., Hoburg, J.F., Stancil, D.D., Goldstein, S.C.: Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Trans. Power Electron. 24, 1819 (2009)

    Article  Google Scholar 

  11. Yuan, Q., Chen, Q., Li, L., Sawaya, K.: Numerical analysis on transmission efficiency of evanescent resonant coupling wireless power transfer system. IEEE Trans. Antennas Propag. 58(5), 1751–1758 (2010)

    Article  Google Scholar 

  12. Sample, A.P., Meyer, D.T., Smith, J.R.: Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron. 58, 544 (2011)

    Article  Google Scholar 

  13. Kurs, A., Moffatt, R., Soljacic, M.: Simultaneous mid-range power transfer to multiple devices. Appl. Phys. Lett. 96, 044102 (2010)

    Article  Google Scholar 

  14. Wang, B., Nishino, T., Teo, K.H.: Wireless power transmission efficiency enhancement with metamaterials. In: Proceedings of the IEEE International Conference on Wireless Information Technology and Systems (ICWITS’10), Honululu, Hawai’i, 28 Aug–03 Sept 2010

    Google Scholar 

  15. Urzhumov, Y., Smith, D.R.: Metamaterial-enhanced coupling between magnetic dipoles for efficient wireless power transfer. Phys. Rev. B 83, 205114 (2011)

    Article  Google Scholar 

  16. Wang, B., Teo, K.H., Nishino, T., Yerazunis, W., Barnwell, J., Zhang, J.: Wireless power transfer with metamaterials. In: Proceedings of European Conference on Antennas and Propagation (EuCAP 2011), 11–15 Apr 2011, Rome, Italy

    Google Scholar 

  17. Wang, B., Teo, K.H., Nishino, T., Yerazunis, W., Barnwell, J., Zhang, J.: Experiments on wireless power transfer with metamaterials. Appl. Phys. Lett. 98, 254101 (2011)

    Article  Google Scholar 

  18. Wang, B., Teo, K.H.: Metamaterials for wireless power transfer. In: Proceedings of IEEE International Workshop on Antenna Technology (iWAT), 5–7 Mar 2012. Tuson, Arizona (2012)

    Google Scholar 

  19. Huang, D., Urzhumov, Y., Smith, D.R., Teo, K.H., Zhang, J.: Magnetic superlens-enhanced inductive coupling for wireless power transfer. J. Appl. Phys. 111, 64902 (2012)

    Article  Google Scholar 

  20. Wang, B., Teo, K.H., Yamaguchi, S., Takahashi, T., Konishi, Y.: Flexible and mobile near-field wireless power transfer using an array of resonators. IEICE Technical Report, WPT2011-16 (2011)

    Google Scholar 

  21. Wang, B., Ellstein, D., Teo, K.H.: Analysis on wireless power transfer to moving devices Based on array of resonators. In: Proceedings of European Conference on Antennas and Propagation (EuCAP) 2012, 26–30 Mar 2012, Prague, Czech Republic

    Google Scholar 

  22. Yerazunis, W., Wang, B., Teo, K.H.: Power delivery optimization for a mobile power transfer system based on resonator arrays. In: Proceedings of International Symposium on Antennas and Propagation (ISAP) 2012, 29 Oct–2 Nov 2012, Nagoya, Japan

    Google Scholar 

  23. Lipworth, G., Ensworth, J., Seetharam, K., Huang, D., Lee, J.S., Schmalenberg, P., Nomura, T., Reynolds, M.S., Smith, D.R., Urzhumov, Y.: Magnetic metamaterial superlens for increased range wireless power transfer. Sci. Rep. 4, 3642 (2014)

    Article  Google Scholar 

  24. Rajagopalan, A., RamRakhyani, A.K., Schurig, D., Lazzi, G.: Improving power transfer efficiency of a short-range telemetry system using compact metamaterials. IEEE Trans. Microwave Theory Tech. 62, 947–955 (2014)

    Article  Google Scholar 

  25. Ranaweera, A.L.A.K., Moscoso, C.A., Lee, J.-W.: Anisotropic metamaterial for efficiency enhancement of mid-range wireless power transfer under coil misalignment. J. Phys. D: Appl. Phys. 48, 455104 (2015)

    Article  Google Scholar 

  26. Zhang, Y., Tang, H., Yao, C., Li, Y., Xiao, S.: Experiments on adjustable magnetic metamaterials applied in megahertz wireless power transmission. AIP Adv. 5, 017142 (2015)

    Google Scholar 

  27. Pendry, J.B.: Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966 (2000)

    Article  Google Scholar 

  28. Shelby, R.A., Smith, D.R., Schultz, S.: Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    Article  Google Scholar 

  29. Smith, D.R., Pendry, J.B., Wiltshire, M.C.K.: Metamaterials and negative refractive index. Science 305, 788 (2004)

    Article  Google Scholar 

  30. Fang, N., Lee, H., Sun, C., Zhang, X.: Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534 (2005)

    Article  Google Scholar 

  31. Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F., Smith, D.R.: Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977 (2006)

    Article  Google Scholar 

  32. Engheta, N., Ziolkowski, R.W.: A positive future for double-negative metamaterials. IEEE Trans. Microw. Theory Tech. 53, 1535 (2005)

    Article  Google Scholar 

  33. Freire, M.J., Marques, R., Jelinek, L.: Experimental demonstration of a \(\mu = -1\) metamaterial lens for magnetic resonance imaging. Appl. Phys. Lett. 93, 231108 (2008)

    Article  Google Scholar 

  34. Smith, D.R., Schultz, S., Markos, P., Soukoulis, C.M.: Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65, 195104 (2002)

    Article  Google Scholar 

  35. Freire, M.J., Marques, R.: Planar magnetoinductive lens for three-dimensional subwavelength imaging. Appl. Phys. Lett. 86, 182505 (2005)

    Article  Google Scholar 

  36. Ellstein, D., Wang, B., Teo, K.H.: Accurate models for spiral resonators. In: Proceedings of European Microwave Week (EuMW 2012), 28 Oct–2 Nov 2012, Amsterdam, Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingnan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Wang, B., Yerazunis, W., Teo, K.H. (2016). Wireless Power Transfer Based on Metamaterials. In: Nikoletseas, S., Yang, Y., Georgiadis, A. (eds) Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-46810-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46810-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46809-9

  • Online ISBN: 978-3-319-46810-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics