Abstract
Although wireless charging delivers energy reliably, it still faces regulatory challenges to provide high power density without incurring health risks. In clustered Wireless Sensor Networks (WSNs), relatively low energy supplies from wireless chargers cannot meet the rising energy demands from cluster heads. Fortunately, solar energy harvesting provides high power density without health risks whereas its energy supply is subject to weather dynamics. This chapter introduces a new framework with hybrid energy sources—cluster heads can use solar panels to scavenge solar energy and the rest of nodes are powered by wireless charging. The network is divided into three hierarchical levels. On the first level, we study a discrete placement problem of where to deploy solar-powered cluster heads that can minimize overall cost. Then the discrete problem is extended into continuous space for better solutions using the Weiszfeld algorithm. On the second level, we establish an energy balance in the network. A distributed cluster head reselection algorithm is proposed to regain energy balance when sunlight is unavailable. On the third level, we first consider the tour planning problem by combining wireless charging with mobile data gathering in a joint tour. We then propose a polynomial-time scheduling algorithm to find appropriate hitting points on sensors’ transmission boundaries for data gathering. Our simulation results demonstrate that network with hybrid sources can reduce battery depletion by 20 % and save operating cost by 25 % compared to previous works.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Guo, S., Wang, C., Yang, Y.: Joint mobile data gathering and energy provisioning in wireless rechargeable sensor networks (2014). doi:10.1109/TMC.2014.2307332
Li, Z., Peng, Y., Zhang, W., Qiao, D.: J-roc: A joint routing and charging scheme to prolong sensor network lifetime (2011). doi:10.1109/ICNP.2011.6089076
Peng, Y., Li, Z., Zhang, W., Qiao, D.: Prolonging sensor network lifetime through wireless charging (2010). doi:10.1109/RTSS.2010.35
Tong, B., Li, Z., Wang, G., Zhang, W.: How wireless power charging technology affects sensor network deployment and routing (2010). doi:10.1109/ICDCS.2010.61
Wang, C., Li, J., Ye, F., Yang, Y.: Netwrap: An ndn based real-time wireless recharging framework for wireless sensor networks (2014). doi:10.1109/TMC.2013.2296515
Wang, C., Li, J., Ye, F., Yang, Y.: A mobile data gathering framework for wireless rechargeable sensor networks with vehicle movement costs and capacity constraints (2015). doi:10.1109/TC.2015.2490060
Zhao, M., Li, J., Yang, Y.: A framework of joint mobile energy replenishment and data gathering in wireless rechargeable sensor networks (2014). doi:10.1109/TMC.2014.2307335
Dai, H., Liu, Y., Chen, G., Wu, X., He, T.: Scape: Safe charging with adjustable power (2014). doi:10.1109/INFCOMW.2014.6849226
He, S., Chen, J., Jiang, F., Yau, D.K.Y., Xing, G., Sun, Y.: Energy provisioning in wireless rechargeable sensor networks (2013). doi:10.1109/TMC.2012.161
Nikoletseas, S., Raptis, T.P., Raptopoulos, C.: Low radiation efficient wireless energy transfer in wireless distributed systems (2015). doi:10.1109/ICDCS.2015.28
Fcc rules for ism bands, http://www.afar.net/tutorials/fcc-rules
Raghunathan, V., Kansal, A., Hsu, J., Friedman, J., Srivastava, M.: Design considerations for solar energy harvesting wireless embedded systems (2005). doi:10.1109/IPSN.2005.1440973
Guha, S., Khuller, S.: Greedy strikes back: improved facility location algorithms (1998). http://dl.acm.org/citation.cfm?id=314613.315037
Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility location algorithms analyzed using dual fitting with factor-revealing lp (2003). doi:10.1145/950620.950621
Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and lagrangian relaxation (2001). doi:10.1145/375827.375845
Shmoys, D.B., Tardos, E., Aardal, K.: Approximation algorithms for facility location problems (extended abstract) (1997). doi:10.1145/258533.258600
Weiszfeld, E., Plastria, F.: On the point for which the sum of the distances to n given points is minimum (2009). doi:10.1007/s10479-008-0352-z
Kansal, A., Hsu, J., Srivastava, M., Raqhunathan, V.: Harvesting aware power management for sensor networks (2006). doi:10.1109/DAC.2006.229276
Liu, R.S., Sinha, P., Koksal, C.E.: Joint energy management and resource allocation in rechargeable sensor networks (2010). doi:10.1109/INFCOM.2010.5461958
Vigorito, C.M., Ganesan, D., Barto, A.G.: Adaptive control of duty cycling in energy-harvesting wireless sensor networks (2007). doi:10.1109/SAHCN.2007.4292814
Wang, C., Guo, S., Yang, Y.: An optimization framework for mobile data collection in energy-harvesting wireless sensor networks (2016). doi:10.1109/TMC.2016.2533390
He, L., Pan, J., Xu, J.: A progressive approach to reducing data collection latency in wireless sensor networks with mobile elements (2013). doi:10.1109/TMC.2012.105
Ma, M., Yang, Y., Zhao, M.: Tour planning for mobile data-gathering mechanisms in wireless sensor networks (2013). doi:10.1109/TVT.2012.2229309
Sugihara, R., Gupta, R.K.: Path planning of data mules in sensor networks (2011). doi:10.1145/1993042.1993043
Yuan, B., Orlowska, M., Sadiq, S.: On the optimal robot routing problem in wireless sensor networks (2007). doi:10.1109/TKDE.2007.1062
Dumitrescu, A., Mitchell, J.S.B.: Approximation algorithms for tsp with neighborhoods in the plane (2001). http://dl.acm.org/citation.cfm?id=365411.365417
Elbassioni, K., Fishkin, A.V., Mustafa, N.H., Sitters, R.: Approximation algorithms for euclidean group tsp (2005). doi:10.1007/1152346890
Safra, S., Schwartz, O.: On the complexity of approximating tsp with neighborhoods and related problems (2006). doi:10.1007/s00037-005-0200-3
Kuhn, H.W.: A note on fermat’s problem (1973). doi:10.1007/BF01584648
Wu, X., Chen, G., Das, S.K.: Avoiding energy holes in wireless sensor networks with nonuniform node distribution (2008). doi:10.1109/TPDS.2007.70770
Sharma, N., Gummeson, J., Irwin, D., Shenoy, P.: Cloudy computing: leveraging weather forecasts in energy harvesting sensor systems (2010). doi:10.1109/SECON.2010.5508260
Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance (1985). doi:10.1016/0304-3975(85)90224-5
Luo, J., Hubaux, J.P.: Joint sink mobility and routing to maximize the lifetime of wireless sensor networks: the case of constrained mobility (2010). doi:10.1109/TNET.2009.2033472
Ma, M., Yang, Y.: Sencar: an energy-efficient data gathering mechanism for large-scale multihop sensor networks (2007). doi:10.1109/TPDS.2007.1070
Zhao, M., Yang, Y.: Bounded relay hop mobile data gathering in wireless sensor networks. In: 2009 IEEE 6th International Conference on Mobile Adhoc and Sensor Systems, pp. 373–382 (2009). doi:10.1109/MOBHOC.2009.5336976
MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, pp. 281–297. University of California Press, Berkeley, California (1967). http://projecteuclid.org/euclid.bsmsp/1200512992
Weather underground: www.wunderground.com/history/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this chapter
Cite this chapter
Wang, C., Li, J., Ye, F., Yang, Y. (2016). Joint Design of Solar Energy Harvesting with Wireless Charging. In: Nikoletseas, S., Yang, Y., Georgiadis, A. (eds) Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-46810-5_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-46810-5_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46809-9
Online ISBN: 978-3-319-46810-5
eBook Packages: Computer ScienceComputer Science (R0)