Abstract
An accurate equivalent circuit model to predict the Power Conversion Efficiency (PCE) of a Schottky Barrier Diode (SBD) is presented in this chapter. By making use of good insight into the used SBD models and careful analysis of circuit behavior, more efficient rectifier circuits have been identified. An increase in circuit efficiency of 18–25 % is shown compared to state of the art, resulting in 20–180 % more available energy from the rectifying circuit. Also the accuracy of simulation results has increased significantly due to the proposed model usage and analysis technique. All the simulations in this chapter are performed in a conjugately matched environment, which allows for an objective comparison of different Schottky diodes and rectifier topologies. The simulation results show a near-perfect match with measured data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andreev, S., Galinina, O., Pyattaev, A., Gerasimenko, M., Tirronen, T., Torsner, J., Sachs, J., Dohler, M., Koucheryavy, Y.: Understanding the IoT connectivity landscape: a contemporary M2M radio technology roadmap. IEEE Commun. Mag. 53(9), 32–40 (2015). doi:10.1109/MCOM.2015.7263370
Avago Technologies: Linear Model for Diode Surface Mount Packages. In: Application Note 1124 (2010)
Avago Technologies: Low Cost Surface Mount Power Limiters. In: Application Note 1050 (2010)
Bardeen, J.: On the theory of the A-C. Impedance of a contact rectifier. Bell Syst. Tech. J. 28, 428–434 (1949)
Cowley, A., Sorensen, H.: Quantitative comparison of solid-state microwave detectors. IEEE Trans. Microw. Theory Tech. 14(12), 588–602 (1966). doi:10.1109/TMTT.1966.1126337
Deveney, M.: A temperature dependent SPICE macro-model for Zener and avalanche diodes. In: Proceedings of the 34th Midwest Symposium on Circuits and Systems, 1991, vol. 2, pp. 592–596 (1991). doi:10.1109/MWSCAS.1991.252092
Greinacher, H.: Das Ionometer und seine Verwendung zur Messung von Radium- und Rontgenstrahlen. Physikalische Zeitschrift 15, 410–415 (1914)
Hemour, S., Wu, K.: Radio-frequency rectifier for electromagnetic energy harvesting: development path and future outlook. Proc. IEEE 102(11), 1667–1691 (2014). doi:10.1109/JPROC.2014.2358691
Hemour, S., Zhao, Y., Lorenz, C., Houssameddine, D., Gui, Y., Hu, C.M., Wu, K.: Towards low-power high-efficiency RF and microwave energy harvesting. IEEE Trans. Microw. Theory Tech. 62(4), 965–976 (2014). doi:10.1109/TMTT.2014.2305134
Hewlett Packard: Hermetic PIN Diodes for Stripline / Microstrip Switches / Attenuators. In: Technical Data 5965-8882E
Kamalinejad, P., Mahapatra, C., Sheng, Z., Mirabbasi, S., Leung, V., Guan, Y.L.: Wireless energy harvesting for the internet of things. IEEE Commun. Mag. 53(6), 102–108 (2015). doi:10.1109/MCOM.2015.7120024
Kanaya, H., Tsukamaoto, S., Hirabaru, T., Kanemoto, D., Pokharel, R., Yoshida, K.: Energy harvesting circuit on a one-sided directional flexible antenna. IEEE Microw. Wirel. Compon. Lett. 23(3), 164–166 (2013). doi:10.1109/LMWC.2013.2246779
Kuhn, V., Lahuec, C., Seguin, F., Person, C.: A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%. IEEE Trans. Microw. Theory Tech. 63(5), 1768–1778 (2015). doi:10.1109/TMTT.2015.2416233
Massobrio, G., Antognetti, P.: Semiconductor Device Modeling with SPICE. McGraw-Hill (1988)
Nagel, L.W., Pederson, D.: Spice (simulation program with integrated circuit emphasis). Tech. Rep. UCB/ERL M382, EECS Department, University of California, Berkeley. http://www.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html (1973)
Nintanavongsa, P., Muncuk, U., Lewis, D., Chowdhury, K.: Design optimization and implementation for RF energy harvesting circuits. IEEE J. Emerg. Sel. Topics Circuits Syst. 2(1), 24–33 (2012). doi:10.1109/JETCAS.2012.2187106
Pflug, H.W., Visser, H.J., Keyrouz, S.: Practical applications of radiative wireless power transfer. In: Wireless Power Transfer Conference (WPTC), 2015 IEEE, pp. 1–4. doi:10.1109/WPT.2015.7140131 (2015)
Qucs homepage: http://qucs.sourceforge.net/. [Online] http://qucs.sourceforge.net/ (2015)
Rahola, J.: Power waves and conjugate matching. IEEE Trans. Circuits Syst. II: Express Briefs 55(1), 92–96 (2008). doi:10.1109/TCSII.2007.905420
Roberg, M., Reveyrand, T., Ramos, I., Falkenstein, E., Popovic, Z.: High-efficiency harmonically terminated diode and transistor rectifiers. IEEE Trans. Microw. Theory Tech. 60(12), 4043–4052 (2012). doi:10.1109/TMTT.2012.2222919
Russell, H.T.: The SPICE Diode Model (1991). Chapter 3 from Rectifier Applications Handbook, Motorola
Schottky, W.: Vereinfachte und erweiterte Theorie der Randschichtgleichrichter. Zeitschrift für Physik 118(9–10), 539–592 (1942)
Shockley, W.: The theory of p-n junctions in semiconductor and p-n junction transistors. Bell Syst. Tech. J. 28, 435–489 (1949)
Sze, S.M.: Physics of Semiconductor Devices. Wiley (1969)
Torrey, H., Whitmer, C.: Crystal Rectifiers. McGraw-Hill (1948)
van Rossum, G.: Python website. https://www.python.org/. [Online] https://www.python.org/
Valenta, C.R., Durgin, G.D.: Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microw. Mag. 15(4), 108–120 (2014). doi:10.1109/MMM.2014.2309499
Vendelin, G.D., Pavio, A.M., Rohde, U.L.: Microwave Circuit Design Using Linear and Nonlinear Techniques, 1st edn. Wiley-Interscience (1992)
Visser, H.J., Keyrouz, S., Smolders, A.B.: Optimized rectenna design. Wirel. Power Transf. 2, 44–50 (2015). doi:10.1017/wpt.2014.14
Visser, H.J., Vullers, R.J.M.: RF energy harvesting and transport for wireless sensor network applications: principles and requirements. Proc. IEEE 101(6), 1410–1423 (2013). doi:10.1109/JPROC.2013.2250891
Vladimirescu, A.: The SPICE Book. Wiley (1994)
Wong, S., Hu, C.M.: SPICE macro model for the simulation of zener diode I-V characteristics. IEEE Circuits Devices Mag. 7(4), 9–12 (1991). doi:10.1109/101.134564
Yi, J., Ki, W.H., Tsui, C.Y.: Analysis and design strategy of UHF micro-power cmos rectifiers for micro-sensor and RFID applications. IEEE Trans. Circuits Syst. I: Regul. Pap. 54(1), 153–166 (2007). doi:10.1109/TCSI.2006.887974
Acknowledgements
The authors would like to thank Shady Keyrouz of the Eindhoven University of Technology for his contribution in the validation of the time trajectory technique.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this chapter
Cite this chapter
Pflug, H.W., Visser, H.J. (2016). Wireless Power Transfer: Discrete Rectifier Modeling and Analysis. In: Nikoletseas, S., Yang, Y., Georgiadis, A. (eds) Wireless Power Transfer Algorithms, Technologies and Applications in Ad Hoc Communication Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-46810-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-46810-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46809-9
Online ISBN: 978-3-319-46810-5
eBook Packages: Computer ScienceComputer Science (R0)