Skip to main content

Fully Automating Graf’s Method for DDH Diagnosis Using Deep Convolutional Neural Networks

  • Conference paper
  • First Online:
Deep Learning and Data Labeling for Medical Applications (DLMIA 2016, LABELS 2016)

Abstract

Developmental dysplasia of the hip (DDH) is a condition affecting up to 1 in 30 infants. DDH is easy to treat if diagnosed early, but undiagnosed DDH can result in life-long hip pain, dysfunction and an increased risk of early onset osteoarthritis, and accounts for around 30 % of all hip replacements in patients under 60. The gold standard for diagnosis in infants is an ultrasound scan, followed by an analysis procedure known as Graf’s method. The application of Graf’s method is notoriously operator-dependent, requiring years of training to reach reasonable and reproducible performance. We describe a novel deep-learning based pipeline that applies Graf’s method to ultrasound scans of the hip. We use a convolutional network with an adversarial component to segment the image into relevant landmarks, and define a set of post-processing rules to translate the segmentations into Graf’s metrics. Comparing our pipeline to estimates made by experts in DDH diagnosis shows promising results.

The CUDL (Collaborative for Ultrasound Deep Learning) Group is an international multidisciplinary academic collaboration between expert clinicians and computer scientists to apply deep learning networks to ultrasound imaging. For a full list of contributors please see the acknowledgments section. For more information visit www.cudl.ai.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Furnes, O., Lie, S.A., Espehaug, B., Vollset, S.E., Engesaeter, L.B., Havelin, L.I.: Hip disease and the prognosis of total hip replacements. Bone Joint J. 83(4), 579–579 (2001)

    Article  Google Scholar 

  2. Graf, R.: The diagnosis of congenital hip-joint dislocation by the ultrasonic combound treatment. Arch. Orthop. Trauma. Surg. 97(2), 117–133 (1980)

    Article  Google Scholar 

  3. Dias, J.J., Thomas, I.H., Lamont, A.C., Mody, B.S., et al.: The reliability of ultrasonographic assessment of neonatal hips. Bone Joint J. 75(3), 479–482 (1993)

    Google Scholar 

  4. Roovers, E.A., Boere-Boonekamp, M.M., Geertsma, T.S.A., Zielhuis, G.A., Kerkhoff, A.H.M.: Ultrasonographic screening for developmental dysplasia of the hip in infants. Bone Joint J. 85(5), 726–730 (2003)

    Google Scholar 

  5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  6. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  7. Zhang, W., Li, R., Deng, H., Wang, L., Lin, W., Ji, S., Shen, D.: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108, 214–224 (2015)

    Article  Google Scholar 

  8. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. (2016)

    Google Scholar 

  9. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  10. Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation and fine-grained localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 447–456 (2015)

    Google Scholar 

  11. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. arXiv preprint arXiv:1603.06937 (2016)

  12. Ioffe, S., Szegedy, C., Normalization, B.: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv:1502.03167, pp. 1–11 (2015)

  13. Goodfellow, I., Pouget-Abadie, J., Mirza, M.: Generative Adversarial Networks, arXiv preprint, pp. 1–9 (2014)

    Google Scholar 

  14. Radford, A., Metz, L., Chintala, S.: Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv, pp. 1–15 (2015)

    Google Scholar 

  15. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  16. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations, pp. 1–13 (2015)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. arXiv preprint, pp. 1–11 (2015)

    Google Scholar 

  18. Van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., Yu, T.: Scikit-image: image processing in Python. PeerJ 2, e453 (2014)

    Article  Google Scholar 

  19. Zieger, M.: Ultrasound of the infant hip. Part 2. Validity of the method. Pediatr. Radiol. 16(6), 488–492 (1986)

    Article  Google Scholar 

  20. Cevik, K.K., Kocer, H.E., Andac, S.: Segmentation of the ilium and femur regions from ultrasound images for diagnosis of developmental dysplasia of the hip. J. Med. Imaging Health Inf. 6(2), 449–457 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

Members of CUDL who contributed to paper: Jeevesh Kapur, Singapore, Singapore; Jeffrey Young, Stanford, California, US; Meghan Imrie, Stanford, California, US; Claudia Maizen, London, England; Paulien Bjilsma, London, England; Daniel Reed, London, England; Rosy Jalan, London, England; Ibraheim El-Daly, London, England; Lukasz Matuszewski, Lublin, Poland; Salih Marangoz, Istanbul, Turkey; Greg Firth, Johannesburg, South Africa; Leon Izerel, Johannesburg, South Africa; Ole Rahbek, Aarhus, Denmark; Michel Bach Hellfritzsch, Aarhus, Denmark; Christian Wong, Copenhagen, Denmark; Charlotte Strandberg, Gentofte, Denmark; Michael Christodolou, Athens, Greece; Abhilash Hareendranathan, Edmonton, Alberta, Canada; Dornoosh Zonoobi, Edmonton, Alberta, Canada; Nicole Williams, Adelaide, Australia; Andrew Morris, Adelaide, Australia; Peter Cundy, Adelaide, Australia; Rebecca Linke, Adelaide, Australia.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to David Golan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Golan, D., Donner, Y., Mansi, C., Jaremko, J., Ramachandran, M., on behalf of CUDL. (2016). Fully Automating Graf’s Method for DDH Diagnosis Using Deep Convolutional Neural Networks. In: Carneiro, G., et al. Deep Learning and Data Labeling for Medical Applications. DLMIA LABELS 2016 2016. Lecture Notes in Computer Science(), vol 10008. Springer, Cham. https://doi.org/10.1007/978-3-319-46976-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46976-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46975-1

  • Online ISBN: 978-3-319-46976-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics