Abstract
We present a robust algorithm for organ localization from 3D volumes in the presence of large anatomical and contextual variations. The 3D spatial search space is decomposed into two components: slice and pixel, both are modeled in 2D space. For each component, we adopt different learning architectures to leverage respective modeling power on global and local context at three orthogonal orientations. Unlike conventional patch-based scanning schemes in learning-based object detection algorithms, slice scanning along each orientation is applied, which significantly reduces the number of model evaluations. Object search evidence obtained from three orientations and different learning architectures is consolidated through fusion schemes to lead to the target organ location. Experiments conducted using 499 patient CT body scans show promise and robustness of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression forests for efficient anatomy detection and localization in CT studies. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MICCAI 2010. LNCS, vol. 6533, pp. 106–117. Springer, Heidelberg (2011)
Cuingnet, R., Prevost, R., Lesage, D., Cohen, L.D., Mory, B., Ardon, R.: Automatic detection and segmentation of kidneys in 3D CT images using random forests. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 66–74. Springer, Heidelberg (2012)
Farabet, C., Couprie, C., Najman, L., LeCun, Y.: Learning hierarchical features for scene labeling. IEEE TPAMI 35(8), 1915–1929 (2013)
Gauriau, R., Cuingnet, R., Lesage, D., Bloch, I.: Multi-organ localization combining global-to-local regression and confidence maps. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part III. LNCS, vol. 8675, pp. 337–344. Springer, Heidelberg (2014)
Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE TPAMI 20(3), 226–239 (1998)
Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. Lippincott Williams & Wilkins, Philadelphia (2009)
Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Proceedings of the NIPS (2012)
Lay, N., Birkbeck, N., Zhang, J., Zhou, S.K.: Rapid multi-organ segmentation using context integration and discriminative models. In: Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L., Gee, J.C. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 450–462. Springer, Heidelberg (2013)
Liu, W., Rabinovich, A., Berg, A.C.: Parsenet: looking wider to see better (2015). arXiv:1506.04579v2
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the CVPR (2015)
Roth, H.R., Lu, L., Farag, A., Shin, H.C., Liu, J., Turkbey, E.B., Summers, R.M.: Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Heidelberg (2015)
Sharma, A., Tuzel, O., Liu, M.Y.: Recursive context propagation network for semantic scene labeling. In: Proceedings of the NIPS (2014)
Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: Proc. CVPR (2013)
Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes using marginal space learning and steerable features. IEEE TMI 27(11), 1668–1681 (2008)
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors emerge in deep scene CNNs. In: Proceedings of the ICLR (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Lu, X., Xu, D., Liu, D. (2016). Robust 3D Organ Localization with Dual Learning Architectures and Fusion. In: Carneiro, G., et al. Deep Learning and Data Labeling for Medical Applications. DLMIA LABELS 2016 2016. Lecture Notes in Computer Science(), vol 10008. Springer, Cham. https://doi.org/10.1007/978-3-319-46976-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-46976-8_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46975-1
Online ISBN: 978-3-319-46976-8
eBook Packages: Computer ScienceComputer Science (R0)