Abstract
Deep convolutional neural networks have achieved great results on image classification problems. In this paper, a new method using a deep convolutional neural network for detecting blood vessels in B-mode ultrasound images is presented. Automatic blood vessel detection may be useful in medical applications such as deep venous thrombosis detection, anesthesia guidance and catheter placement. The proposed method is able to determine the position and size of the vessels in images in real-time. 12,804 subimages of the femoral region from 15 subjects were manually labeled. Leave-one-subject-out cross validation was used giving an average accuracy of 94.5 %, a major improvement from previous methods which had an accuracy of 84 % on the same dataset. The method was also validated on a dataset of the carotid artery to show that the method can generalize to blood vessels on other regions of the body. The accuracy on this dataset was 96 %.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abolmaesumi, P., Sirouspour, M., Salcudean, S.: Real-time extraction of carotid artery contours from ultrasound images. In: Proceedings 13th IEEE Symposium on Computer-Based Medical Systems, CBMS 2000, pp. 181–186. IEEE Computer Society (2000)
Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. Adv. Neural Inf. Process. Syst. 19(1), 153–160 (2007)
Girshick, R.: Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448. IEEE, December 2015
Glorot, X., Bordes, A., Bengio, Y.: Deep Sparse rectifier neural networks. In: 14th International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)
Guerrero, J., Salcudean, S.E., McEwen, J.A., Masri, B.A., Nicolaou, S.: System for deep venous thombosis detection using objective compression measures. IEEE Trans. Biomed. Eng. 53(5), 845–854 (2006)
Guerrero, J., Salcudean, S.E., McEwen, J.A., Masri, B.A., Nicolaou, S.: Real-time vessel segmentation and tracking for ultrasound imaging applications. IEEE Trans. Med. Imaging 26(8), 1079–1090 (2007)
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the ACM International Conference on Multimedia, pp. 675–678 (2014)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, pp. 91–99, June 2015
Smistad, E., Bozorgi, M., Lindseth, F.: FAST: framework for heterogeneous medical image computing and visualization. Int. J. Comput. Assist. Radiol. Surg. 10(11), 1811–1822 (2015)
Smistad, E., Lindseth, F.: Real-time automatic artery segmentation, reconstruction and registration for ultrasound-guided regional anaesthesia of the femoral nerve. IEEE Trans. Med. Imaging 35(3), 752–761 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Smistad, E., Løvstakken, L. (2016). Vessel Detection in Ultrasound Images Using Deep Convolutional Neural Networks. In: Carneiro, G., et al. Deep Learning and Data Labeling for Medical Applications. DLMIA LABELS 2016 2016. Lecture Notes in Computer Science(), vol 10008. Springer, Cham. https://doi.org/10.1007/978-3-319-46976-8_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-46976-8_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-46975-1
Online ISBN: 978-3-319-46976-8
eBook Packages: Computer ScienceComputer Science (R0)