Abstract
Analysis and visualization of eye movement data from eye-tracking studies typically take into account gazes, fixations, and saccades of both eyes filtered and fused into a combined eye. Although this is a valid strategy, we argue that it is also worth investigating low-level eye-tracking data prior to high-level analysis, because today’s eye-tracking systems measure and infer data from both eyes separately. In this work, we present an approach that supports visual analysis and cleansing of low-level time-varying data for eye-tracking experiments. The visualization helps researchers get insights into the quality of the data in terms of its uncertainty, or reliability. We discuss uncertainty originating from eye tracking, and how to reveal it for visualization, using a comparative approach for disagreement between plots, and a density-based approach for accuracy in volume rendering. Finally, we illustrate the usefulness of our approach by applying it to eye movement data recorded with two state-of-the-art eye trackers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahrens, J., Geveci, B., Law, C.: ParaView: an end-user tool for large data visualization. Energy 836, 717–732 (2005)
Aigner, W., Miksch, S., Müller, W., Schumann, H., Tominski, C.: Visualizing time-oriented data—a systematic view. Comput. Graph. 31 (3), 401–409 (2007)
Al-Rahayfeh, A., Faezipour, M.: Eye tracking and head movement detection: a state-of-art survey. Transl. Eng. Health Med. 1 (2013). http://ieeexplore.ieee.org/document/6656866/
Andersson, R., Nyström, M., Holmqvist, K.: Sampling frequency and eye-tracking measures: how speed affects durations, latencies, and more. J. Eye Mov. Res. 3 (3), 1–12 (2010)
Barz, M., Bulling, A., Daiber, F.: Computational modelling and prediction of gaze estimation error for head-mounted eye trackers (2015). https://www.d2.mpi-inf.mpg.de/content/computational-modelling-and-prediction-gaze-estimation-error-head-mounted-eye-trackers
Bavoil, L., Callahan, S.P., Crossno, P.J., Freire, J., Scheidegger, C.E., Silva, T., Vo, H.T.: VisTrails: enabling interactive multiple-view visualizations. In: Proceedings of IEEE Visualization, pp. 135–142 (2005)
Beard, K., Deese, H., Pettigrew, N.R.: A framework for visualization and exploration of events. Inf. Vis. 7 (2), 133–151 (2007)
Blascheck, T., Kurzhals, K., Raschke, M., Burch, M., Weiskopf, D., Ertl, T.: State-of-the-art of visualization for eye tracking data. In: EuroVis STAR, pp. 63–82 (2014)
Blascheck, T., John, M., Koch, S., Kurzhals, K., Ertl, T.: VA 2: a visual analytics approach for evaluating visual analytics applications. IEEE Trans. Vis. Comput. Graph. 22 (1), 61–70 (2016)
Bojko, A.: Informative or misleading? Heatmaps deconstructed. In: Jacko, J. (ed.) Human-Computer Interaction. New Trends. Lecture Notes in Computer Science, vol. 5610, pp. 30–39. Springer, Berlin/Heidelberg (2009)
Brodlie, K., Allendes Osorio, R., Lopes, A.: A review of uncertainty in data visualization. In: Dill, J., Earnshaw, R., Kasik, D., Vince, J., Wong, P.C. (eds.) Expanding the Frontiers of Visual Analytics and Visualization, pp. 81–109. Springer, London (2012)
Cerrolaza, J.J., Villanueva, A., Villanueva, M., Cabeza, R.: Error characterization and compensation in eye tracking systems. In: Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA’12, pp. 205–208 (2012)
Çöltekin, A., Fabrikant, S., Lacayo, M.: Exploring the efficiency of users’ visual analytics strategies based on sequence analysis of eye movement recordings. Int. J. Geogr. Inf. Sci. 24 (10), 1559–1575 (2010)
Djurcilov, S., Kim, K., Lermusiaux, P.F.J., Pang, A.: Volume rendering data with uncertainty information. In: Proceedings of the Joint EUROGRAPHICS and IEEE TCVG Symposium on Visualization, pp. 243–252 (2001)
Gschwandtner, T., Aigner, W., Kaiser, K., Miksch, S., Seyfang, A.: CareCruiser: exploring and visualizing plans, events, and effects interactively. In: Proceedings of IEEE Pacific Visualization Symposium, PacificVis, pp. 43–50 (2011)
Gschwandtner, T., Aigner, W., Miksch, S., Gärtner, J., Kriglstein, S., Pohl, M., Suchy, N.: TimeCleanser: a visual analytics approach for data cleansing of time-oriented data. In: Proceedings of the 14th International Conference on Knowledge Technologies and Data-driven Business, i-KNOW’14, pp. 18:1–18:8 (2014)
Harrower, M., Brewer, C.A.: ColorBrewer.org: an online tool for selecting colour schemes for maps. Cartogr. J. 40 (1), 27–37 (2003)
Holmqvist, K., Nyström, M., Mulvey, F.: Eye tracker data quality: what it is and how to measure it. In: Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA’12, pp. 45–52 (2012)
Hopf, M., Luttenberger Michael, M., Thomas, E.: Hierarchical splatting of scattered 4D data. IEEE Comput. Graph. Appl. 24 (4), 64–72 (2004)
Kandel, S., Paepcke, A., Hellerstein, J., Heer, J.: Wrangler: interactive visual specification of data transformation scripts. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3363–3372 (2011)
Kurzhals, K., Weiskopf, D.: Space-time visual analytics of eye-tracking data for dynamic stimuli. IEEE Trans. Vis. Comput. Graph. 19 (12), 2129–2138 (2013)
Mackworth, J.F., Mackworth, N.H.: Eye fixations recorded on changing visual scenes by the television eye-marker. J. Opt. Soc. Am. 48 (7), 439–445 (1958)
Netzel, R., Burch, M., Weiskopf, D.: Interactive scanpath-oriented annotation of fixations. In: Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA’16, pp. 183–187 (2016)
Rahm, E., Do, H.H.: Data cleaning: Problems and current approaches. IEEE Data Eng. Bull. 23 (4), 3–13 (2000)
Richardson, D.C., Dale, R.: Looking to understand: the coupling between speakers’ and listeners’ eye movements and its relationship to discourse comprehension. Cognit. Sci. 29 (6), 1045–1060 (2005)
Rind, A., Aigner, W., Miksch, S., Wiltner, S., Pohl, M., Turic, T., Drexler, F.: Visual exploration of time-oriented patient data for chronic diseases: design study and evaluation. In: Information Quality in e-Health. Lecture Notes in Computer Science, vol. 7058, pp. 301–320. Springer, Berlin/New York (2011)
SensoMotoric Instruments GmbH: BeGaze 2.4 Manual (2010)
Shahar, Y., Goren-Bar, D., Boaz, D., Tahan, G.: Distributed, intelligent, interactive visualization and exploration of time-oriented clinical data and their abstractions. Artif. Intell. Med. 38 (2), 115–135 (2006)
Singh, H., Singh, J.: Human eye tracking and related issues: a review. Int. J. Sci. Res. Publ. 2, 1–9 (2012)
Skeels, M., Lee, B., Smith, G., Robertson, G.G.: Revealing uncertainty for information visualization. Inf. Vis. 9 (1), 70–81 (2010)
Stegmaier, S., Strengert, M., Klein, T., Ertl, T.: A simple and flexible volume rendering framework for graphics-hardware-based raycasting. In: Proceedings of the Fourth Eurographics/IEEE VGTC Conference on Volume Graphics, VG’05, pp. 187–195 (2005)
Tobii Technology: Tobii Studio 2.2 User Manual (2010)
Tobii Technology: Accuracy and Precision Test Report: Tobii T60 Eye Tracker (2011). 21 July 2011, Version: 2.1.1
Acknowledgements
We would like to thank the German Research Foundation (DFG) for financial support within project A01 of SFB/Transregio 161.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Schulz, C., Burch, M., Beck, F., Weiskopf, D. (2017). Visual Data Cleansing of Low-Level Eye-Tracking Data. In: Burch, M., Chuang, L., Fisher, B., Schmidt, A., Weiskopf, D. (eds) Eye Tracking and Visualization. ETVIS 2015. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-47024-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-47024-5_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47023-8
Online ISBN: 978-3-319-47024-5
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)