Skip to main content

Integer Linear Programming Formulation and Exact Algorithm for Computing Pathwidth

  • Chapter
  • First Online:
Nature-Inspired Design of Hybrid Intelligent Systems

Abstract

Computing the Pathwidth of a graph is the problem of finding a linear ordering of the vertices such that the width of its corresponding path decomposition is minimized. This problem has been proven to be NP-hard. Currently, some of the best exact methods for generic graphs can be found in the mathematical software project called SageMath. This project provides an integer linear programming model (IPSAGE) and an enumerative algorithm (EASAGE), which is exponential in time and space. The algorithm EASAGE uses an array whose size grows exponentially with respect to the size of the problem. The purpose of this array is to improve the performance of the algorithm. In this chapter we propose two exact methods for computing pathwidth. More precisely, we propose a new integer linear programming formulation (IPPW) and a new enumerative algorithm (BBPW). The formulation IPPW generates a smaller number of variables and constraints than IPSAGE. The algorithm BBPW overcomes the exponential space requirement by using a last-in-first-out stack. The experimental results showed that, in average, IPPW reduced the number of variables by 33.3 % and the number of constraints by 64.3 % with respect to IPSAGE. This reduction of variables and constraints allowed IPPW to save approximately 14.9 % of the computing time of IPSAGE. The results also revealed that BBPW achieved a remarkable use of memory with respect to EASAGE. In average, BBPW required 2073 times less amount of memory than EASAGE for solving the same set of instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Díaz, J., Petit, J., & Serna, M. (2002). A survey of graph layout problems. ACM Computing Surveys (CSUR)34(3), 313–356.

    Google Scholar 

  2. Lengauer, T. (1981). Black-white pebbles and graph separation. Acta Informatica16(4), 465–475.

    Google Scholar 

  3. Leiserson, C. E. (1980, October). Area-efficient graph layouts. In Foundations of Computer Science, 1980, 21st Annual Symposium on (pp. 270–281). IEEE.

    Google Scholar 

  4. Linhares, A., & Yanasse, H. H. (2002). Connections between cutting-pattern sequencing, VLSI design, and flexible machines. Computers & Operations Research29(12), 1759–1772.

    Google Scholar 

  5. De Oliveira, A., & Lorena, L. A. (2002). A constructive genetic algorithm for gate matrix layout problems. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on21(8), 969–974.

    Google Scholar 

  6. Bodlaender, H., Gustedt, J., & Telle, J. A. (1998, January). Linear-time register allocation for a fixed number of registers. In SODA (Vol. 98, pp. 574–583).

    Google Scholar 

  7. Kornai, A., & Tuza, Z. (1992). Narrowness, pathwidth, and their application in natural language processing. Discrete Applied Mathematics36(1), 87–92.

    Google Scholar 

  8. Lopes, I. C., & Carvalho, J. M. (2010). Minimization of open orders using interval graphs. International Journal of Applied Mathematics40.

    Google Scholar 

  9. Dinneen, M. J. (1996). VLSI Layouts and DNA physical mappings. Technical Report, Los Alamos National Laboratory.

    Google Scholar 

  10. Bollobás, B., & Leader, I. (1991). Edge-isoperimetric inequalities in the grid. Combinatorica11(4), 299–314.

    Google Scholar 

  11. Castillo-García, N., Huacuja, H. J. F., Rangel, R. A. P., Flores, J. A. M., Barbosa, J. J. G., & Valadez, J. M. C. (2014). On the Exact Solution of VSP for General and Structured Graphs: Models and Algorithms. In Recent Advances on Hybrid Approaches for Designing Intelligent Systems (pp. 519–532). Springer International Publishing.

    Google Scholar 

  12. Ellis, J. A., Sudborough, I. H., & Turner, J. S. (1994). The vertex separation and search number of a graph. Information and Computation113(1), 50–79.

    Google Scholar 

  13. Skodinis, K. (2000). Computing optimal linear layouts of trees in linear time (pp. 403–414). Springer Berlin Heidelberg.

    Google Scholar 

  14. Bodlaender, H. L., & Möhring, R. H. (1993). The pathwidth and treewidth of cographs. SIAM Journal on Discrete Mathematics6(2), 181–188.

    Google Scholar 

  15. Bodlaender, H. L., Kloks, T., & Kratsch, D. (1995). Treewidth and pathwidth of permutation graphs. SIAM Journal on Discrete Mathematics8(4), 606–616.

    Google Scholar 

  16. Duarte, A., Escudero, L. F., Martí, R., Mladenovic, N., Pantrigo, J. J., & Sánchez-Oro, J. (2012). Variable neighborhood search for the vertex separation problem. Computers & Operations Research39(12), 3247–3255.

    Google Scholar 

  17. Sánchez-Oro, J., Pantrigo, J. J., & Duarte, A. (2014). Combining intensification and diversification strategies in VNS. An application to the Vertex Separation problem. Computers & Operations Research52, 209–219.

    Google Scholar 

  18. Kinnersley, N. G. (1992). The vertex separation number of a graph equals its path-width. Information Processing Letters42(6), 345–350.

    Google Scholar 

  19. Cohen, N., & Coudert, D. (2010). Integer linear programming formulation and enumerative algorithm for computing the vertex separation number. http://sagemanifolds.obspm.fr/preview/reference/graphs/sage/graphs/graph_decompositions/vertex_separation.html.

  20. Suchan, K., & Villanger, Y. (2009). Computing pathwidth faster than 2n. In Parameterized and Exact Computation (pp. 324–335). Springer Berlin Heidelberg.

    Google Scholar 

  21. Huacuja, H. F., Castillo-García, N., Rangel, R. A. P., Flores, J. A. M., Barbosa, J. J. G., & Valadez, J. M. C. (2015). Two New Exact Methods for the Vertex Separation Problem. International Journal of Combinatorial Optimization Problems and Informatics6(1), 31–41.

    Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Mexican Council of Science and Technology (CONACYT). The second author would like to thank CONACYT for his Ph.D. scholarship. We also wish to thank the IBM Academic Initiative for allowing us to use the optimization software CPLEX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norberto Castillo-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fraire-Huacuja, H.J. et al. (2017). Integer Linear Programming Formulation and Exact Algorithm for Computing Pathwidth. In: Melin, P., Castillo, O., Kacprzyk, J. (eds) Nature-Inspired Design of Hybrid Intelligent Systems. Studies in Computational Intelligence, vol 667. Springer, Cham. https://doi.org/10.1007/978-3-319-47054-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47054-2_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47053-5

  • Online ISBN: 978-3-319-47054-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics