Skip to main content

Qualitative Case-Based Reasoning for Humanoid Robot Soccer: A New Retrieval and Reuse Algorithm

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9969))

Included in the following conference series:

Abstract

This paper proposes a new Case-Based Reasoning (CBR) approach, named Q-CBR, that uses a Qualitative Spatial Reasoning theory to model, retrieve and reuse cases by means of spatial relations. A qualitative distance and orientation calculus (\(\mathcal {EOPRA}\)) is used to model cases using qualitative relations between the objects in a case. A new retrieval algorithm is proposed that uses the Conceptual Neighborhood Diagram to compute the similarity measure between a new problem and the cases in the case base. A reuse algorithm is also introduced that selects the most similar case and shares it with other agents, based on their qualitative position. The proposed approach was evaluated on simulation and on real humanoid robots. Preliminary results suggest that the proposed approach is faster than using a quantitative model and other similarity measure such as the Euclidean distance. As a result of running Q-CBR, the robots obtained a higher average number of goals than those obtained when running a metric CBR approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The distance matrix for \(\mathcal {EOPRA}_6\) is available at the URL https://goo.gl/photos/nJ83KngMH6i789xz7.

References

  1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun. 7, 39–59 (1994)

    Google Scholar 

  2. Altaf, M.M., Elbagoury, B.M., Alraddady, F., Roushdy, M.: Extended case-based behavior control for multi-humanoid robots. Int. J. Hum. Robot. 13, 1550035 (2015)

    Article  Google Scholar 

  3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  4. Davoust, A., Floyd, M.W., Esfandiari, B.: Use of fuzzy histograms to model the spatial distribution of objects in case-based reasoning. In: Bergler, S. (ed.) AI 2008. LNCS (LNAI), vol. 5032, pp. 72–83. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68825-9_8

    Chapter  Google Scholar 

  5. de Mantaras, R.L., McSherry, D., Bridge, D., Smyth, B., Craw, S., Faltings, B., Maher, M.L., Cox, M., Forbus, K., Keane, M., Aamodt, A., Watson, I.: Retrieval, reuse, revision, and retention in CBR. Knowl. Eng. Rev. 20, 215–240 (2006)

    Article  Google Scholar 

  6. Weghe, N., Maeyer, P.: Conceptual neighbourhood diagrams for representing moving objects. In: Akoka, J., Liddle, S.W., Song, I.-Y., Bertolotto, M., Comyn-Wattiau, I., Heuvel, W.-J., Kolp, M., Trujillo, J., Kop, C., Mayr, H.C. (eds.) ER 2005. LNCS, vol. 3770, pp. 228–238. Springer, Heidelberg (2005). doi:10.1007/11568346_25

    Chapter  Google Scholar 

  7. Dorr, C.H., Latecki, L.J., Moratz, R.: Shape similarity based on the qualitative spatial reasoning calculus eOPRAm. In: Fabrikant, S.I., Raubal, M., Bertolotto, M., Davies, C., Freundschuh, S., Bell, S. (eds.) COSIT 2015. LNCS, vol. 9368, pp. 130–150. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23374-1_7

    Chapter  Google Scholar 

  8. Du, Y., Liang, F., Sun, Y.: Integrating spatial relations into case-based reasoning to solve geographic problems. Knowl. Based Syst. 33, 111–123 (2012)

    Article  Google Scholar 

  9. Dufour-Lussier, V., Le Ber, F., Lieber, J., Martin, L.: Adapting spatial and temporal cases. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS (LNAI), vol. 7466, pp. 77–91. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32986-9_8

    Chapter  Google Scholar 

  10. Floyd, M.W., Esfandiari, B., Lam, K.: A case-based reasoning approach to imitating robocup players. In: Proceedings of the Twenty-First FLAIRS, Florida, USA, pp. 251–256. AAAI Press (2008)

    Google Scholar 

  11. Freksa, C.: Conceptual neighborhood and its role in temporal and spatial reasoning. In: Decision Support Systems and Qualitative Reasoning, pp. 181–187 (1991)

    Google Scholar 

  12. Jære, M.D., Aamodt, A., Skalle, P.: ECCBR 2002. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  13. Karol, A., Nebel, B., Stanton, C., Williams, M.-A.: Case based game play in the RoboCup four-legged league Part I the theoretical model. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 739–747. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25940-4_73

    Chapter  Google Scholar 

  14. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Book  MATH  Google Scholar 

  15. Lin, Y., Liu, A., Chen, K.: A hybrid architecture of case-based reasoning and fuzzy behavioral control applied to robot soccer. In: Workshop on Artificial Intelligence (ICS2002), Hualien, Taiwan, National Dong Hwa University (2002)

    Google Scholar 

  16. Liu, Z., Fu, L., Zhou, Y.: Case-based reasoning algorithm based on qualitative causality. In: 7th International Joint Conference on CSO, pp. 519–523. IEEE, July 2014

    Google Scholar 

  17. Marling, C., Tomko, M., Gillen, M., Alex, D., Chelberg, D.: Case-based reasoning for planning, world modeling in the robocup small sized league. In: Workshop on Issues in Designing Physical Agents for Dynamic Real-Time Environments: World Modeling, Planning, Learning, and Communicating (IJCAI) (2003)

    Google Scholar 

  18. Moratz, R., Wallgrün, J.O.: Spatial reasoning with augmented points: extending cardinal directions with local distances. J. Spat. Inf. Sci. 5(5), 1–30 (2012)

    Google Scholar 

  19. Mossakowski, T., Moratz, R.: Qualitative reasoning about relative direction of oriented points. Artif. Intell. 180–181, 34–45 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nehmzow, U.: Scientific Methods in Mobile Robotics: Quantitative Analysis of Agent Behaviour. Springer, London (2006)

    Google Scholar 

  21. Perico, D.H., Bianchi, R.A.C., Santos, P.E., de Mántaras. R.L.: Collaborative communication of qualitative spatial perceptions for multi-robot systems. In: Proceedings of 29th International Workshop on Qualitative Reasoning (IJCAI), pp. 77–84, New York, NY, USA (2016)

    Google Scholar 

  22. Perico, D.H., Silva, I.J., Homem, T.P.D., Destro, R.C., Bianchi, R.A.C.: Hardware, software aspects of the design, assembly of a new humanoid robot for robocup soccer. In: 2014 Joint Conference on Robotics (2011). Observation of strains. Infect Dis Ther. 3(1), 35–43.: SBR-LARS, pp. 73–78. IEEE, October 2014

    Google Scholar 

  23. Randell, D.A., Witkowski, M.: Tracking regions using conceptual neighbourhoods. In: Proceedings of the Workshop on Spatial and Temporal Reasoning ECAI 2004, pp. 63–71 (2004)

    Google Scholar 

  24. RoboCup 2015 robocup soccer humanoid league rules and setup (2015). http://www.robocuphumanoid.org

  25. Ros, R., Arcos, J.L., de Mantaras, R.L., Veloso, M.: A case-based approach for coordinated action selection in robot soccer. Artif. Intell. 173(9–10), 1014–1039 (2009)

    Article  Google Scholar 

  26. Southey, T., Little, J.J.: Relations, learning qualitative spatial for object classification. In: IROS: From Sensors to Human Spatial Concepts (2007)

    Google Scholar 

  27. Stone, P., Sutton, R.S., Kuhlmann, G.: Reinforcement learning for RoboCup soccer keepaway. Adap. Behav. 13(3), 165–188 (2005)

    Article  Google Scholar 

  28. Wolter, D., Wallgrün, J.: Qualitative spatial reasoning for applications: new challenges and the SparQ toolbox. In: Qualitative Spatio-temporal Representation and Reasoning: Trends and Future Directions, pp. 336–362 (2012)

    Google Scholar 

  29. Young, J., Hawes, N.: Predicting situated behaviour using sequences of abstract spatial relations. In: AAAI 2013 Proceedings, Fall Symposium Series (2013)

    Google Scholar 

  30. Young, J., Hawes, N.: Learning by observation using qualitative spatial relations. In: Proceedings of the 2015 AAMAS, pp. 745–751, Richland, SC (2015)

    Google Scholar 

Download references

Acknowledgements

Thiago P. D. Homem acknowledges support from CAPES and PRP/IFSP. Danilo H. Perico acknowledges support from CAPES. Paulo E. Santos acknowledges support from FAPESP (2012/04089-3). Ramon L. de Mantaras acknowledges support from Generalitat de Catalunya Research Grant 2014 SGR 118 and CSIC Project 201550E022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago P. D. Homem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Homem, T.P.D., Perico, D.H., Santos, P.E., Bianchi, R.A.C., de Mantaras, R.L. (2016). Qualitative Case-Based Reasoning for Humanoid Robot Soccer: A New Retrieval and Reuse Algorithm. In: Goel, A., Díaz-Agudo, M., Roth-Berghofer, T. (eds) Case-Based Reasoning Research and Development. ICCBR 2016. Lecture Notes in Computer Science(), vol 9969. Springer, Cham. https://doi.org/10.1007/978-3-319-47096-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47096-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47095-5

  • Online ISBN: 978-3-319-47096-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics