Abstract
This paper proposes a new Case-Based Reasoning (CBR) approach, named Q-CBR, that uses a Qualitative Spatial Reasoning theory to model, retrieve and reuse cases by means of spatial relations. A qualitative distance and orientation calculus (\(\mathcal {EOPRA}\)) is used to model cases using qualitative relations between the objects in a case. A new retrieval algorithm is proposed that uses the Conceptual Neighborhood Diagram to compute the similarity measure between a new problem and the cases in the case base. A reuse algorithm is also introduced that selects the most similar case and shares it with other agents, based on their qualitative position. The proposed approach was evaluated on simulation and on real humanoid robots. Preliminary results suggest that the proposed approach is faster than using a quantitative model and other similarity measure such as the Euclidean distance. As a result of running Q-CBR, the robots obtained a higher average number of goals than those obtained when running a metric CBR approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The distance matrix for \(\mathcal {EOPRA}_6\) is available at the URL https://goo.gl/photos/nJ83KngMH6i789xz7.
References
Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun. 7, 39–59 (1994)
Altaf, M.M., Elbagoury, B.M., Alraddady, F., Roushdy, M.: Extended case-based behavior control for multi-humanoid robots. Int. J. Hum. Robot. 13, 1550035 (2015)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)
Davoust, A., Floyd, M.W., Esfandiari, B.: Use of fuzzy histograms to model the spatial distribution of objects in case-based reasoning. In: Bergler, S. (ed.) AI 2008. LNCS (LNAI), vol. 5032, pp. 72–83. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68825-9_8
de Mantaras, R.L., McSherry, D., Bridge, D., Smyth, B., Craw, S., Faltings, B., Maher, M.L., Cox, M., Forbus, K., Keane, M., Aamodt, A., Watson, I.: Retrieval, reuse, revision, and retention in CBR. Knowl. Eng. Rev. 20, 215–240 (2006)
Weghe, N., Maeyer, P.: Conceptual neighbourhood diagrams for representing moving objects. In: Akoka, J., Liddle, S.W., Song, I.-Y., Bertolotto, M., Comyn-Wattiau, I., Heuvel, W.-J., Kolp, M., Trujillo, J., Kop, C., Mayr, H.C. (eds.) ER 2005. LNCS, vol. 3770, pp. 228–238. Springer, Heidelberg (2005). doi:10.1007/11568346_25
Dorr, C.H., Latecki, L.J., Moratz, R.: Shape similarity based on the qualitative spatial reasoning calculus eOPRAm. In: Fabrikant, S.I., Raubal, M., Bertolotto, M., Davies, C., Freundschuh, S., Bell, S. (eds.) COSIT 2015. LNCS, vol. 9368, pp. 130–150. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23374-1_7
Du, Y., Liang, F., Sun, Y.: Integrating spatial relations into case-based reasoning to solve geographic problems. Knowl. Based Syst. 33, 111–123 (2012)
Dufour-Lussier, V., Le Ber, F., Lieber, J., Martin, L.: Adapting spatial and temporal cases. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS (LNAI), vol. 7466, pp. 77–91. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32986-9_8
Floyd, M.W., Esfandiari, B., Lam, K.: A case-based reasoning approach to imitating robocup players. In: Proceedings of the Twenty-First FLAIRS, Florida, USA, pp. 251–256. AAAI Press (2008)
Freksa, C.: Conceptual neighborhood and its role in temporal and spatial reasoning. In: Decision Support Systems and Qualitative Reasoning, pp. 181–187 (1991)
Jære, M.D., Aamodt, A., Skalle, P.: ECCBR 2002. Springer, Heidelberg (2002)
Karol, A., Nebel, B., Stanton, C., Williams, M.-A.: Case based game play in the RoboCup four-legged league Part I the theoretical model. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 739–747. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25940-4_73
Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann Publishers Inc., San Francisco (1993)
Lin, Y., Liu, A., Chen, K.: A hybrid architecture of case-based reasoning and fuzzy behavioral control applied to robot soccer. In: Workshop on Artificial Intelligence (ICS2002), Hualien, Taiwan, National Dong Hwa University (2002)
Liu, Z., Fu, L., Zhou, Y.: Case-based reasoning algorithm based on qualitative causality. In: 7th International Joint Conference on CSO, pp. 519–523. IEEE, July 2014
Marling, C., Tomko, M., Gillen, M., Alex, D., Chelberg, D.: Case-based reasoning for planning, world modeling in the robocup small sized league. In: Workshop on Issues in Designing Physical Agents for Dynamic Real-Time Environments: World Modeling, Planning, Learning, and Communicating (IJCAI) (2003)
Moratz, R., Wallgrün, J.O.: Spatial reasoning with augmented points: extending cardinal directions with local distances. J. Spat. Inf. Sci. 5(5), 1–30 (2012)
Mossakowski, T., Moratz, R.: Qualitative reasoning about relative direction of oriented points. Artif. Intell. 180–181, 34–45 (2012)
Nehmzow, U.: Scientific Methods in Mobile Robotics: Quantitative Analysis of Agent Behaviour. Springer, London (2006)
Perico, D.H., Bianchi, R.A.C., Santos, P.E., de Mántaras. R.L.: Collaborative communication of qualitative spatial perceptions for multi-robot systems. In: Proceedings of 29th International Workshop on Qualitative Reasoning (IJCAI), pp. 77–84, New York, NY, USA (2016)
Perico, D.H., Silva, I.J., Homem, T.P.D., Destro, R.C., Bianchi, R.A.C.: Hardware, software aspects of the design, assembly of a new humanoid robot for robocup soccer. In: 2014 Joint Conference on Robotics (2011). Observation of strains. Infect Dis Ther. 3(1), 35–43.: SBR-LARS, pp. 73–78. IEEE, October 2014
Randell, D.A., Witkowski, M.: Tracking regions using conceptual neighbourhoods. In: Proceedings of the Workshop on Spatial and Temporal Reasoning ECAI 2004, pp. 63–71 (2004)
RoboCup 2015 robocup soccer humanoid league rules and setup (2015). http://www.robocuphumanoid.org
Ros, R., Arcos, J.L., de Mantaras, R.L., Veloso, M.: A case-based approach for coordinated action selection in robot soccer. Artif. Intell. 173(9–10), 1014–1039 (2009)
Southey, T., Little, J.J.: Relations, learning qualitative spatial for object classification. In: IROS: From Sensors to Human Spatial Concepts (2007)
Stone, P., Sutton, R.S., Kuhlmann, G.: Reinforcement learning for RoboCup soccer keepaway. Adap. Behav. 13(3), 165–188 (2005)
Wolter, D., Wallgrün, J.: Qualitative spatial reasoning for applications: new challenges and the SparQ toolbox. In: Qualitative Spatio-temporal Representation and Reasoning: Trends and Future Directions, pp. 336–362 (2012)
Young, J., Hawes, N.: Predicting situated behaviour using sequences of abstract spatial relations. In: AAAI 2013 Proceedings, Fall Symposium Series (2013)
Young, J., Hawes, N.: Learning by observation using qualitative spatial relations. In: Proceedings of the 2015 AAMAS, pp. 745–751, Richland, SC (2015)
Acknowledgements
Thiago P. D. Homem acknowledges support from CAPES and PRP/IFSP. Danilo H. Perico acknowledges support from CAPES. Paulo E. Santos acknowledges support from FAPESP (2012/04089-3). Ramon L. de Mantaras acknowledges support from Generalitat de Catalunya Research Grant 2014 SGR 118 and CSIC Project 201550E022.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Homem, T.P.D., Perico, D.H., Santos, P.E., Bianchi, R.A.C., de Mantaras, R.L. (2016). Qualitative Case-Based Reasoning for Humanoid Robot Soccer: A New Retrieval and Reuse Algorithm. In: Goel, A., Díaz-Agudo, M., Roth-Berghofer, T. (eds) Case-Based Reasoning Research and Development. ICCBR 2016. Lecture Notes in Computer Science(), vol 9969. Springer, Cham. https://doi.org/10.1007/978-3-319-47096-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-47096-2_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47095-5
Online ISBN: 978-3-319-47096-2
eBook Packages: Computer ScienceComputer Science (R0)