Skip to main content

Pattern Classification and Analysis of Memory Processing in Depression Using EEG Signals

  • Conference paper
  • First Online:
Brain Informatics and Health (BIH 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9919))

Included in the following conference series:

Abstract

An automatic, electroencephalogram (EEG) based approach of diagnosing depression with regard to memory processing is presented. EEG signals are extracted from 15 depressed subjects and 12 normal subjects during experimental tasks of reorder and rehearsal. After preprocessing noisy EEG signals, nine groups of mathematical features are extracted and classification with support vector machine (SVM) is conducted under a five-fold cross-validation, with accuracy of up to 70 %–100 %. The contribution of this paper lies in the analysis and visualization of the difference between depressed and control subjects in EEG signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ragland, J., Blumenfeld, R., Ramsay, I., Yonelinas, A., Yoon, J., Solomon, M., Carter, C., Ranganath, C.: Neural correlates of relational and item-specific encoding during working and long-term memory in schizophrenia. NeuroImage 59, 1719–1726 (2012)

    Article  Google Scholar 

  2. Loewenthal, K.: Depression. In: Leeming, D.A. (ed.) Encyclopedia of Psychology and Religion, pp. 1–5. Springer, Heidelberg (2016)

    Google Scholar 

  3. Hosseinifard, B., Moradi, M., Rostami, R.: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput. Methods Programs Biomed. 109, 339–345 (2013)

    Article  Google Scholar 

  4. Li, Y., Fan, F.: Classification of schizophrenia and depression by EEG with ANNs. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference (2005)

    Google Scholar 

  5. Yuan, Q., Zhou, W., Li, S., Cai, D.: Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy Res. 96, 29–38 (2011)

    Article  Google Scholar 

  6. Baddeley, A., Eysenck, M., Anderson, M.: Memory. Psychology Press, Hove (2009)

    Google Scholar 

  7. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004)

    Article  Google Scholar 

  8. Gandy, K.C.: An EEG investigation of memory in depression: the effect of cognitive processing. Master thesis, Department of Psychology, University of Texas at Arlington (2015)

    Google Scholar 

  9. Mognon, A., Jovicich, J., Bruzzone, L., Buiatti, M.: ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology 48, 229–240 (2011)

    Article  Google Scholar 

  10. Wang, S., Gwizdka, J., Chaovalitwongse, W.: Using wireless EEG signals to assess memory workload in the n-back task. IEEE Trans. Hum. Mach. Syst. 46, 1–12 (2015)

    Google Scholar 

  11. Wang, S., Lin, C., Wu, C., Chaovalitwongse, W.: Early detection of numerical typing errors using data mining techniques. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 41, 1199–1212 (2011)

    Article  Google Scholar 

  12. Addison, P.: The Illustrated Wavelet Transform Handbook. Institute of Physics Publishing, Bristol (2002)

    Book  MATH  Google Scholar 

  13. Rosso, O., Martin, M., Figliola, A., Keller, K., Plastino, A.: EEG analysis using wavelet-based information tools. J. Neurosci. Methods 153, 163–182 (2006)

    Article  Google Scholar 

  14. Subasi, A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32, 1084–1093 (2007)

    Article  Google Scholar 

  15. Grimes, D., Tan, D., Hudson, S., Shenoy, P., Rao, R.: Feasibility and pragmatics of classifying working memory load with an electroencephalograph. In: Proceeding of the Twenty-Sixth Annual CHI Conference on Human Factors in Computing Systems - CHI 2008 (2008)

    Google Scholar 

  16. Oh, S., Lee, Y., Kim, H.: A novel EEG feature extraction method using Hjorth parameter. IJEEE 2, 106–110 (2014)

    Article  Google Scholar 

  17. Qian, B., Rasheed, K.: Hurst exponent and financial market predictability. In: IASTED Conference on Financial Engineering and Applications (2004)

    Google Scholar 

  18. Drummond, J., Brann, C., Perkins, D., Wolfe, D.: A comparison of median frequency, spectral edge frequency, a frequency band power ratio, total power, and dominance shift in the determination of depth of anesthesia. Acta Anaesthesiol. Scand. 35, 693–699 (1991)

    Article  Google Scholar 

  19. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226–1238 (2005)

    Article  Google Scholar 

  20. Yuvaraj, R., Murugappan, M., Mohamed Ibrahim, N., Iqbal, M., Sundaraj, K., Mohamad, K., Palaniappan, R., Mesquita, E., Satiyan, M.: On the analysis of EEG power, frequency and asymmetry in Parkinsons disease during emotion processing. Behav. Brain Funct. 10, 12 (2014)

    Article  Google Scholar 

  21. Golinkoff, M., Sweeney, J.: Cognitive impairments in depression. J. Affect. Disord. 17, 105–112 (1989)

    Article  Google Scholar 

  22. Bruzzone, L., Prieto, D.: Automatic analysis of the difference image for unsupervised change detection. IEEE Trans. Geosci. Remote Sens. 38, 1171–1182 (2000)

    Article  Google Scholar 

  23. Wong, S., Baltuch, G., Jaggi, J., Danish, S.: Functional localization and visualization of the subthalamic nucleus from microelectrode recordings acquired during DBS surgery with unsupervised machine learning. J. Neural Eng. 6, 026006 (2009)

    Article  Google Scholar 

  24. Kaiser, J.: On a simple algorithm to calculate the ‘energy’ of a signal. In: International Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp. 381–384 (1990)

    Google Scholar 

  25. Rosso, O., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schrmann, M., Baar, E.: Wavelet entropy: a new tool for analysis of short duration brain electrical signals. J. Neurosci. Methods 105, 65–75 (2001)

    Article  Google Scholar 

  26. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kin Ming Puk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Puk, K.M., Gandy, K.C., Wang, S., Park, H. (2016). Pattern Classification and Analysis of Memory Processing in Depression Using EEG Signals. In: Ascoli, G., Hawrylycz, M., Ali, H., Khazanchi, D., Shi, Y. (eds) Brain Informatics and Health. BIH 2016. Lecture Notes in Computer Science(), vol 9919. Springer, Cham. https://doi.org/10.1007/978-3-319-47103-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47103-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47102-0

  • Online ISBN: 978-3-319-47103-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics