Abstract
The statistical analysis of functional magnetic resonance imaging (fMRI) is used to extract functional data of cerebral activation during a given experimental task. It allows for assessing changes in cerebral function related to cerebral activities. This methodology has been widely used and a few initiatives aim to develop shared data resources. Searching these data resources for a specific research goal remains a challenging problem. In particular, work is needed to create a global content–based (CB) fMRI retrieval capability.
This work presents a CB fMRI retrieval approach based on the brain activation maps extracted using Probabilistic Independent Component Analysis (PICA). We obtained promising results on data from a variety of experiments which highlight the potential of the system as a tool that provides support for finding hidden similarities between brain activation maps.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
The Montreal Neurological Institute (MNI) defined a standard brain, which is representative of the population, by using a large series of MRI scans on normal controls.
References
Ao, J.: An optimized statistical analysis of fMRI data using independent component analysis. Ph.D. thesis, Texas Tech University (2010)
Bai, B.: Feature extraction and matching in content-based retrieval of functional magnetic resonance images. Ph.D. thesis, The State University of New Jersey (2007)
Bai, B., Kantor, P., Cornea, N., Silver, D.: IR principles for content-based indexing and retrieval of functional brain images. In: Proceedings of 15th ACM International Conference on Information and Knowledge Management, pp. 828–829. ACM (2006)
Bai, B., Kantor, P., Shokoufandeh, A., Silver, D.: fMRI brain image retrieval based on ICA components. In: Conference on Current Trends in Computer Sciencel, pp. 10–17. IEEE (2007)
Bai, B., Kantor, P.B., Cornea, N.D., Silver, D.: Toward content-based indexing and retrieval of functional brain images. In: RIAO (2007)
van den Broek, E.L., Kisters, P.M., Vuurpijl, L.G.: The utilization of human color categorization for conten-based image retrieval. In: Proceedings of SPIE, Human Vision and Electronic Imaging IX, pp. 351–362 (2004)
van den Broek, E.L., Kisters, P.M., Vuurpijl, L.G.: Content-based Image retrieval benchmarking: utilizing color categories and color distributions. J. Imaging Sci. Technol. 49, 293–301 (2005)
Craddock, R.C., James, G.A., Holtzheimer, P.E., Hu, X.P., Mayberg, H.S.: A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33(8), 1914–1928 (2012)
Ford, J., Farid, H., Makedon, F., Flashman, L.A., McAllister, T.W., Megalooikonomou, V., Saykin, A.J.: Patient classification of fMRI activation maps. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 58–65. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39903-2_8
Haselgrove, C., Poline, J.B., Kennedy, D.N.: A simple tool for neuroimaging data sharing. Front. Neuroinformatics 8, 82 (2014)
GarcĂa Seco de Herrera, A., Schaer, R., Markonis, D., MĂ¼ller, H.: Comparing fusion techniques for the ImageCLEF 2013 medical case retrieval task. Comput. Med. Imaging Graph. 39, 46–54 (2015)
Kasutani, E., Yamada, A.: The MPEG-7 color layout descriptor: a compact image feature description for high-speed image/video segment retrieval. In: Proceedings of International Conference on Image Processing, ICIP 2001, pp. 674–677 (2001)
LaConte, S., Strother, S., Cherkassky, V., Anderson, J., Hu, X.: Support vector machines for temporal classification of block design fMRI data. NeuroImage 26(2), 317–329 (2005)
Mitchell, T.M., Hutchinson, R., Niculescu, R.S., Pereira, F., Wang, X., Just, M., Newman, S.: Learning to decode cognitive states from brain images. Mach. Learn. 57(1–2), 145–175 (2004)
Poline, J.B., Brett, M.: The general linear model and fMRI: does love last forever? Neuroimage 62(2), 871–880 (2012)
Shapiro, L.G., Atmosukarto, I., Cho, H., Lin, H.J., Ruiz-Correa, S., Yuen, J.: Similarity-based retrieval for biomedical applications. In: Perner, P. (ed.) Case-Based Reasoning on Images and Signals. SCI, vol. 73, pp. 355–387. Springer, Berlin (2008)
Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vis. 7(1), 11–32 (1991)
Tungaraza, R., Guan, J., Shapiro, L., Brinkley, J., Ojemann, J., Franklin, J.: A similarity retrieval tool for functional magnetic resonance imaging statistical maps. Int. J. Biomed. Data Min. 2, 1–12 (2013)
Woolrich, M.W., Beckmann, C.F., Nichols, T.E., Smith, S.M.: Statistical analysis of fMRI data. In: Filippi, M. (ed.) fMRI Techniques and Protocols. Neuromethods, vol. 41, pp. 179–236. Springer, Berlin (2009)
Zhang, J., Megalooikonomou, V.: An effective and efficient technique for searching for similar brain activation patterns. In: 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2007, pp. 428–431. IEEE (2007)
Acknowledgments
This research was supported by the Intramural Research Program of the National Institutes of Health (NIH), National Library of Medicine (NLM), and Lister Hill National Center for Biomedical Communications (LHNCBC). Thanks to Dr. Bing Bai and Prof. Paul Kantor for providing us the fMRI experimental data.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
G. Seco de Herrera, A., Long, L.R., Antani, S. (2016). Content-Based fMRI Brain Maps Retrieval. In: Ascoli, G., Hawrylycz, M., Ali, H., Khazanchi, D., Shi, Y. (eds) Brain Informatics and Health. BIH 2016. Lecture Notes in Computer Science(), vol 9919. Springer, Cham. https://doi.org/10.1007/978-3-319-47103-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-47103-7_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47102-0
Online ISBN: 978-3-319-47103-7
eBook Packages: Computer ScienceComputer Science (R0)