Skip to main content

Computational Role of Astrocytes in Bayesian Inference and Probability Distribution Encoding

  • Conference paper
  • First Online:
Brain Informatics and Health (BIH 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9919))

Included in the following conference series:

  • 1338 Accesses

Abstract

The past few years have seen new research methods confirming more confidently that glia have a key information processing role in the brain, specifically in relation to learning capability. However, many details Tof glia’s role remain unknown, including a gap between cellular and behavioural level findings. Based on \(Ca^{2+}\) wave mechanics in astrocytes, we derive a theoretical capability of astrocytes to encode cognitive representations as probability distributions over synapses. The process is analogous to MCMC Bayesian inference that samples a neural network configuration from a prior in the astrocyte and then uses its performance to update to a posterior distribution. The proposed model explains recent behavioural results where obstructing astrocytes leads to deficiencies in learning new knowledge without affecting ability to recall existing knowledge. The model is also a novel Bayesian brain theory which uniquely addresses the cellular and synaptic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bazargani, N., Attwell, D.: Astrocyte calcium signaling: the third wave. Nat. Neurosci. 19, 182–189 (2016)

    Article  Google Scholar 

  2. Han, X., Chen, M., Wang, F., Windrem, M., Wang, S., Shanz, S., Xu, Q., Oberheim, N.A., Bekar, L., Betstadt, S., Silva, A.J., Takano, T., Goldman, S.A., Nedergaard, M.: Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12, 342–353 (2013)

    Article  Google Scholar 

  3. Lee, H.S., Ghetti, A., Pinto-Duarte, A., Wang, X., Dziewczapolski, G., Galimi, F., Huitron-Resendiz, S., Pia-Crespo, J.C., Roberts, A.J., Verma, I.M., Sejnowski, T.J., Heinemann, S.F.: Astrocytes contribute to gamma oscillations and recognition memory. Proc. Natl. Acad. Sci. 111, E3343–E3352 (2014)

    Article  Google Scholar 

  4. Miranda, M.I., Gonzlez-Cedillo, F.J., Daz-Muoz, M.: Intracellular calcium chelation and pharmacological SERCA inhibition of Ca2+ pump in the insular cortex differentially affect taste aversive memory formation and retrieval. Neurobiol. Learn. Mem. 96, 192–198 (2011)

    Article  Google Scholar 

  5. Han, J., Kesner, P., Metna-Laurent, M., Duan, T., Xu, L., Georges, F., Koehl, M., Abrous, D.N., Mendizabal-Zubiaga, J., Grandes, P.: Acute cannabinoids impair working memory through astroglial CB 1 receptor modulation of hippocampal LTD. Cell 148, 1039–1050 (2012)

    Article  Google Scholar 

  6. Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Freeman and Company, San Francisco (1982)

    Google Scholar 

  7. Shigetomi, E., Patel, S., Khakh, B.S.: Probing the complexities of astrocyte calcium signaling. Trends Cell Biol. 26, 300–312 (2016)

    Article  Google Scholar 

  8. Haydon, P.G., Nedergaard, M.: How do astrocytes participate in neural plasticity? Cold Spring Harb. Perspect. Biol. 7, a020438 (2015)

    Article  Google Scholar 

  9. Oliveira, J.F., Sardinha, V.M., Guerra-Gomes, S., Araque, A., Sousa, N.: Do stars govern our actions? Astrocyte involvement in rodent behavior. Trends Neurosci. 38, 535–549 (2015)

    Article  Google Scholar 

  10. Clarke, L.E., Barres, B.A.: Emerging roles of astrocytes in neural circuit development. Nat. Rev. Neurosci. 14, 311–321 (2013)

    Article  Google Scholar 

  11. Perea, G., Sur, M., Araque, A.: Neuron-glia networks: integral gear of brain function. Front. Cell. Neurosci. 8, 378 (2014)

    Article  Google Scholar 

  12. Ma, D.K., Ming, G., Song, H.: Glial influences on neural stem cell development: cellular niches for adult neurogenesis. Curr. Opin. Neurobiol. 15, 514–520 (2005)

    Article  Google Scholar 

  13. Corty, M.M., Freeman, M.R.: Cell biology in neuroscience: architects in neural circuit design: glia control neuron numbers and connectivity. J. Cell Biol. 203, 395–405 (2013)

    Article  Google Scholar 

  14. Allen, N.J., Bennett, M.L., Foo, L.C., Wang, G.X., Chakraborty, C., Smith, S.J., Barres, B.A.: Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486, 410–414 (2012)

    Article  Google Scholar 

  15. Haber, M., Murai, K.K.: Reshaping neuron glial communication at hippocampal synapses. Neuron Glia Biol. 2, 59 (2005)

    Article  Google Scholar 

  16. Nedergaard, M., Ransom, B., Goldman, S.A.: New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 26, 523–530 (2003)

    Article  Google Scholar 

  17. Nakae, K., Ikegaya, Y., Ishikawa, T., Oba, S., Urakubo, H., Koyama, M., Ishii, S.: A statistical method of identifying interactions in neuron glia systems based on functional multicell Ca2+ imaging. PLoS Comput. Biol. 10, e1003949 (2014)

    Article  Google Scholar 

  18. Volterra, A., Magistretti, P.J., Haydon, P.G. (eds.): The Tripartite Synapse: Glia in Synaptic Transmission. Oxford University Press, New York (2002)

    Google Scholar 

  19. Araque, A., Parpura, V., Sanzgiri, R.P., Haydon, P.G.: Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208–215 (1999)

    Article  Google Scholar 

  20. Araque, A., Carmignoto, G., Haydon, P.G.: Dynamic signaling between astrocytes and neurons. Ann. Rev. Physiol. 63, 795–813 (2001)

    Article  Google Scholar 

  21. Jahn, H.M., Scheller, A., Kirchhoff, F.: Genetic control of astrocyte function in neural circuits. Front. Cell. Neurosci. 9, 310 (2015)

    Article  Google Scholar 

  22. Fields, R.D., Araque, A., Johansen-Berg, H., Lim, S.S., Lynch, G., Nave, K.A., Nedergaard, M., Perez, R., Sejnowski, T., Wake, H.: Glial biology in learning and cognition. Neuroscientist 20, 426–431 (2014)

    Article  Google Scholar 

  23. McKenzie, I.A., Ohayon, D., Li, H., Paes de Faria, J., Emery, B., Tohyama, K., Richardson, W.D.: Motor skill learning requires active central myelination. Science 346, 318–322 (2014)

    Article  Google Scholar 

  24. Bray, N.: GLIA: oligodendrocytes rev up motor learning. Nat. Rev. Neurosci. 15, 766–767 (2014)

    Article  Google Scholar 

  25. Markham, J.A., Greenough, W.T.: Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biol. 1, 351 (2005)

    Article  Google Scholar 

  26. Porto-Pazos, A.B., Veiguela, N., Mesejo, P., Navarrete, M., Alvarellos, A., Ibez, O., Pazos, A., Araque, A.: Artificial astrocytes improve neural network performance. PLoS ONE 6, e19109 (2011)

    Article  Google Scholar 

  27. Ikuta, C., Uwate, Y., Nishio, Y.: Performance and features of multi-layer perceptron with impulse glial network. In: The 2011 International Joint Conference on Neural Networks (IJCNN), pp. 2536–2541. IEEE Press, New York (2011)

    Google Scholar 

  28. Reid, D., Barrett-Baxendale, M.: Glial reservoir computing. In: Second UKSIM European Symposium on Computer Modeling and Simulation, EMS 2008, pp. 81–86. IEEE (2008)

    Google Scholar 

  29. De Pitt, M., Goldberg, M., Volman, V., Berry, H., Ben-Jacob, E.: Glutamate regulation of calcium and IP3 oscillating and pulsating dynamics in astrocytes. J. Biol. Phys. 35, 383–411 (2009)

    Article  Google Scholar 

  30. Wade, J.J., McDaid, L.J., Harkin, J., Crunelli, V., Kelso, J.A.S.: Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach. PLoS ONE 6, e29445 (2011)

    Article  Google Scholar 

  31. Eddi, A., Sultan, E., Moukhtar, J., Fort, E., Rossi, M., Couder, Y.: Information stored in Faraday waves: the origin of a path memory. J. Fluid Mech. 674, 433–463 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Goldman, T., Livne, A., Fineberg, J.: Acquisition of inertia by a moving crack. Phys. Rev. Lett. 104, 114301 (2010)

    Article  Google Scholar 

  33. Kroemer, H.: Quantum Mechanics: For Engineering, Materials Science, and Applied Physics. Prentice Hall, Englewood Cliffs (1994)

    Google Scholar 

  34. Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, vol. 2. Chapman & Hall/CRC, Boca Raton (2014)

    MATH  Google Scholar 

  35. Guhaniyogi, R., Qamar, S., Dunson, D.B.: Bayesian conditional density filtering (2014). arXiv preprint: arXiv:1401.3632

  36. Dimkovski, M., An, A.: A Bayesian model for canonical circuits in the neocortex for parallelized and incremental learning of symbol representations. Neurocomputing 149, 1270–1279 (2015)

    Article  Google Scholar 

  37. Knill, D.C., Pouget, A.: The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27, 712–719 (2004)

    Article  Google Scholar 

  38. Sharkov, E.A.: Breaking Ocean Waves: Geometry, Structure and Remote Sensing. Springer Science & Business Media, Heidelberg (2007)

    Google Scholar 

  39. Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010)

    Article  Google Scholar 

  40. Tenenbaum, J.B., Kemp, C., Griffiths, T.L., Goodman, N.D.: How to grow a mind: statistics, structure, and abstraction. Science 331, 1279–1285 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Deneve, S.: Bayesian inference in spiking neurons. In: Advances in Neural Information Processing Systems, vol. 17, pp. 353–360 (2005)

    Google Scholar 

  42. Rao, R.P.: Hierarchical Bayesian inference in networks of spiking neurons. In: Advances in Neural Information Processing Systems, pp. 1113–1120 (2004)

    Google Scholar 

  43. George, D., Hawkins, J.: Towards a mathematical theory of cortical micro-circuits. PLoS Comput. Biol. 5, e1000532 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Dimkovski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Dimkovski, M., An, A. (2016). Computational Role of Astrocytes in Bayesian Inference and Probability Distribution Encoding. In: Ascoli, G., Hawrylycz, M., Ali, H., Khazanchi, D., Shi, Y. (eds) Brain Informatics and Health. BIH 2016. Lecture Notes in Computer Science(), vol 9919. Springer, Cham. https://doi.org/10.1007/978-3-319-47103-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47103-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47102-0

  • Online ISBN: 978-3-319-47103-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics