Skip to main content

Accelerated Simulation of Hybrid Biological Models with Quasi-Disjoint Deterministic and Stochastic Subnets

  • Conference paper
  • First Online:
Hybrid Systems Biology (HSB 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9957))

Included in the following conference series:

  • 469 Accesses

Abstract

Computational biological models are indispensable tools for in silico hypothesis testing. But with the increasing complexity of biological systems, traditional simulators become inefficient to tackle emerging computational challenges. Hybrid simulation, which combines deterministic and stochastic parts, is a promising direction to deal with such challenges. However, currently existing algorithms of hybrid simulation are impractical for implementing real and complex biological systems. One reason for such limitation is that the performance of hybrid simulation not only relies on the number of stochastic events, but also on the type as well as the efficiency of the deterministic solver. In this paper, a new method is proposed for improving the performance of hybrid simulators by reducing the frequent reinitialisation of the deterministic solver. The proposed approach works well with models that contain a substantial number of stochastic events and higher numbers of continuous variables with limited connections between the deterministic and stochastic regimes. We tested these improvements on a number of case studies and it turns out that, for certain examples, the amended algorithm is ten times faster than the exact method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alfonsi, A., Cancès, E., Turinici, G., Ventura, B., Huisinga, W.: Adaptive simulation of hybrid stochastic and deterministic models for biochemical systems. ESAIM: Proc. 14, 1–13 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Barik, D., Baumann, W.T., Paul, M.R., Novak, B., Tyson, J.J.: A model of yeast cell-cycle regulation based on multisite phosphorylation. Molecular Syst. Biol. 6(1), 405 (2010)

    Google Scholar 

  3. Blätke, M., Heiner, M., Marwan, W.: BioModel engineering with Petri nets, chap. 7, pp. 141–193. Elsevier Inc. (2015). http://store.elsevier.com/product.jsp?isbn=9780128012130

  4. Cao, Y., Gillespie, D., Petzold, L.: Adaptive explicit-implicit tau-leaping method with automatic tau selection. J. Chem. Phys 126(22), 224101 (2007)

    Article  Google Scholar 

  5. Gibson, M., Bruck, J.: Exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. 105, 1876–89 (2000)

    Article  Google Scholar 

  6. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  7. Gillespie, D.: Markov Processes: An Introduction for Physical Scientists. Academic Press, San Diego (1991)

    MATH  Google Scholar 

  8. Gillespie, D.: Stochastic simulation of chemical kinetics. Annual Rev. Phys. Chem. 58(1), 35–55 (2007)

    Article  Google Scholar 

  9. Griffith, M., Courtney, T., Peccoud, J., Sanders, W.H.: Dynamic partitioning for hybrid simulation of the bistable HIV-1 transactivation network. Bioinformatics 22(22), 2782–2789 (2006)

    Article  Google Scholar 

  10. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer Series in Computer Mathematics. Springer Series in Computer Mathematics, vol. 14. Springer, Berlin (1996)

    MATH  Google Scholar 

  11. Haseltine, E., Rawlings, J.: Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117(15), 6959–6969 (2002)

    Article  Google Scholar 

  12. Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy – a unifying Petri net tool. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 398–407. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  13. Hellander, A., Lötstedt, P.: Hybrid method for the chemical master equation. J. Comput. Phys. 227(1), 100–122 (2007)

    Article  MATH  Google Scholar 

  14. Herajy, M., Heiner, M.: Hybrid representation and simulation of stiff biochemical networks. J. Nonlinear Anal. Hybrid Syst. 6(4), 942–959 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Herajy, M., Heiner, M.: A steering server for collaborative simulation of quantitative Petri nets. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 374–384. Springer, Heidelberg (2014)

    Google Scholar 

  16. Herajy, M., Liu, F., Rohr, C.: Coloured hybrid Petri nets for systems biology. In: Proceedings of the 5th International Workshop on Biological Processes & Petri Nets (BioPPN), Satellite Event of PETRI NETS 2014, CEUR Workshop Proceedings, vol. 1159, pp. 60–76 (2014)

    Google Scholar 

  17. Herajy, M., Schwarick, M.: A hybrid Petri net model of the eukaryotic cell cycle. In: Proceedings of the 3rd International Workshop on Biological Processes and Petri Nets (BioPPN), Satellite Event of PETRI NETS 2012, CEUR Workshop Proceedings, vol. 852, pp. 29–43 (2012). CEUR-WS.org. http://ceur-ws.org/Vol-852/

  18. Herajy, M., Heiner, M.: Modeling and simulation of multi-scale environmental systems with generalized hybrid Petri nets. Front. Environ. Sci. 3(53) (2015)

    Google Scholar 

  19. Herajy, M., Schwarick, M., Heiner, M.: Hybrid Petri nets for modelling the eukaryotic cell cycle. In: Koutny, M., Aalst, W.M.P., Yakovlev, A. (eds.) ToPNoC VIII. LNCS, vol. 8100, pp. 123–141. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40465-8_7

    Chapter  Google Scholar 

  20. Hindmarsh, A., Brown, P., Grant, K., Lee, S., Serban, R., Shumaker, D., Woodward, C.: Sundials: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31, 363–396 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Iwamoto, K., Hamada, H., Eguchi, Y., Okamoto, M.: Stochasticity of intranuclear biochemical reaction processes controls the final decision of cell fate associated with DNA damage. PLoS ONE 9, 1–12 (2014)

    Article  Google Scholar 

  22. Kar, S., Baumann, W.T., Paul, M.R., Tyson, J.J.: Exploring the roles of noise in the eukaryotic cell cycle. Proc. Natl. Acad. Sci. U.S.A. 106(16), 6471–6476 (2009)

    Article  Google Scholar 

  23. Kiehl, T., Mattheyses, R., Simmons, M.: Hybrid simulation of cellular behavior. Bioinformatics 20, 316–322 (2004)

    Article  Google Scholar 

  24. Liu, Z., Pu, Y., Li, F., Shaffer, C.A., Hoops, S., Tyson, J.J., Cao, Y.: Hybrid modeling and simulation of stochastic effects on progression through the eukaryotic cell cycle. J. Chem. Phys. 136(3), 034105 (2012)

    Article  Google Scholar 

  25. Mcadams, H., Arkin, A.: It’s a noisy business!. Trends Genet. 15(2), 65–69 (1999)

    Article  Google Scholar 

  26. Pahle, J.: Biochemical simulations: stochastic, approximate stochastic and hybrid approaches. Brief Bioinform. 10(1), 53–64 (2009)

    Article  Google Scholar 

  27. Rathinam, M., Petzold, L., Cao, Y., Gillespie, D.: Stiffness in stochastic chemically reacting systems: the implicit tau-leaping method. J. Chem. Phys. 119, 12784–12794 (2003)

    Article  Google Scholar 

  28. Salis, H., Kaznessis, Y.: Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. J. Chem. Phys 122(5), 54103 (2005)

    Article  Google Scholar 

  29. Soliman, S., Heiner, M.: A unique transformation from ordinary differential equations to reaction networks. PLoS ONE 5(12), e14284 (2010)

    Article  Google Scholar 

  30. Srivastava, R., You, L., Summers, J., Yin, J.: Stochastic vs. deterministic modeling of intracellular viral kinetics. J. Theor. Biol. 218(3), 309–321 (2002)

    Article  MathSciNet  Google Scholar 

  31. Tyson, J.J., Novk, B.: Irreversible transitions, bistability and checkpoint controls in the eukaryotic cell cycle: a systems-level understanding, Chapt. 14. In: Walhout, A.M., Vidal, M., Dekker, J. (eds.) Handbook of Systems Biology, pp. 265–285. Academic Press, San Diego (2013)

    Chapter  Google Scholar 

  32. Vilar, J., Kueh, H., Barkai, N., Leibler, S.: Mechanisms of noise resistance in genetic oscillators. PNAS 99, 59885992 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially funded by the GE-SEED grant (7934) which is administrated by STDF(Science and Technology Development Fund, Egypt) and DAAD (German Academic Exchange Service). We also acknowledge the helpful comments of the anonymous reviewers for improving a previous version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Herajy .

Editor information

Editors and Affiliations

A Reactions of the Circadian Oscillation Model

A Reactions of the Circadian Oscillation Model

Table 3 provides a complete specification of the circadian oscillation model [32] used in Sect. 4.1, This reaction set has been derived from the system of ODEs given in [32] following the approach described in [13]. The given ODEs fulfil the criteria established in [29]; so the result is unique. See [3] for a graphical representation of this reaction set by use of Petri nets and their treatment in the different paradigms.

Table 3. The reaction set of the circadian oscillation model

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Herajy, M., Heiner, M. (2016). Accelerated Simulation of Hybrid Biological Models with Quasi-Disjoint Deterministic and Stochastic Subnets. In: Cinquemani, E., Donzé, A. (eds) Hybrid Systems Biology. HSB 2016. Lecture Notes in Computer Science(), vol 9957. Springer, Cham. https://doi.org/10.1007/978-3-319-47151-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47151-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47150-1

  • Online ISBN: 978-3-319-47151-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics