Abstract
When modeling Chemical Reaction Networks, a commonly used mathematical formalism is that of Petri Nets, with the usual interleaving execution semantics. We aim to substitute to a Chemical Reaction Network, especially a “growth” one (i.e., for which an exponential stationary phase exists), a piecewise synchronous approximation of the dynamics: a resource-allocation-centered Petri Net with maximal-step execution semantics. In the case of unimolecular chemical reactions, we prove the correctness of our method and show that it can be used either as an approximation of the dynamics, or as a method of constraining the reaction rate constants (an alternative to flux balance analysis, using an emergent formally defined notion of “growth rate” as the objective function), or a technique of refuting models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A sequence of transitions that can be fired consecutively starting from a marking.
- 2.
The inequality of (2) is here explicitly expressed via the remainder \(\epsilon \): \({\sum }_{i \in T}\alpha _{ij} \le 1\) is the same as \(\sum _{i \in T}(\alpha _{ij} + \epsilon _j) = 1\).
References
Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1, 117–129 (1976)
Sinnen, O.: Task Scheduling for Parallel Systems. Wiley-Interscience, Hoboken (2007)
Pugatch, R.: Greedy scheduling of cellular self-replication leads to optimal doubling times with a log-Frechet distribution. PNAS 112(8), 2611–2616 (2015)
Weiße, A.Y., Oyarzún, D.A., Danos, V., Swain, P.S.: Mechanistic links between cellular trade-offs, gene expression, and growth. PNAS 112(9), E1038–E1047 (2015)
Pãun, G., Rozenberg, G.: A guide to membrane computing. Theor. Comput. Sci. 287(1), 73–100 (2002). doi:10.1016/S0304-3975(02)00136-6
Lévy, J.-J.: Réductions correctes et optimales dans le lambda-calcul. Ph.D. thesis, Université Paris 7, January 1978
Krepska, E., Bonzanni, N., Feenstra, A., Fokkink, W., Kielmann, T., Bal, H., Heringa, J.: Design issues for qualitative modelling of biological cells with petri nets. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 48–62. Springer, Heidelberg (2008)
Fisher, J., Henzinger, T.A., Mateescu, M., Piterman, N.: Bounded asynchrony: concurrency for modeling cell-cell interactions. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 17–32. Springer, Heidelberg (2008)
Picard, V.: Réseaux de réactions: de l’analyse probabiliste à la réfutation. Ph.D. thesis, Université de Rennes 1, December 2015
Kurtz, T.G.: Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Probab. 8(2), 344–355 (1971)
Orth, J.D., Thiele, I., Palsson, B.Ø.: What is flux balance analysis? Nat. Biotechnol. 28(3), 245–248 (2010). http://doi.org/10.1038/nbt.1614
Karr, J.R., et al.: A whole-cell computational model predicts phenotype from genotype. Cell 150(2), 389–401 (2012). http://dx.doi.org/10.1016/j.cell.2012.05.044
Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115(4), 1716 (2001). doi:10.1063/1.1378322
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
Appendix A CRN Mass-action Kinetic Equations
Consider the following chemical reaction network:

Then \(\mathcal {S} = \{S_1,S_2\}, \nabla ^- = \begin{bmatrix} 1&1 \\ 0&1 \end{bmatrix}, \nabla ^+ = \begin{bmatrix} 0&2 \\ 1&0 \end{bmatrix}, \mathbf {x}^{\nabla ^-} = \begin{bmatrix} x_1 x_2 \\ x_2 \end{bmatrix}\) and \(\frac{d\mathbf {x}}{dt} = \begin{bmatrix} -1&1 \\ 1&-1 \end{bmatrix} \cdot \begin{bmatrix} \kappa _1&0 \\ 0&\kappa _2 \end{bmatrix} \cdot \begin{bmatrix} x_1 x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\kappa _1 x_1 x_2 + \kappa _2 x_2\\ \kappa _1 x_1 x_2 - \kappa _2 x_2 \end{bmatrix} \)
Appendix B Proof of Theorem 1
Proof
Given a resource array m, consider v a (potentially max-parallel) vector compatible at m:
Then we can construct \(\alpha \in \mathbb {R}_+^{|T| \times |S|}\):
s.t.
Furthermore,

i.e. \(\alpha \) is indeed a resource-allocation matrix.
If all reactions of the CRN are unimolecular, then:
hence the uniqueness of \(\alpha \). \(\square \)
Appendix C Non-uniqueness of \(\alpha \) for Bimolecular Reactions
Example 1
(Based on Fig. 1.) \( m = \begin{bmatrix} 9 \\ 9 \\ 9 \end{bmatrix}\), \(\nabla ^- = \begin{bmatrix} 3&0&0 \\ 2&5&0 \\ 0&3&1 \end{bmatrix}\), and \(v = \begin{bmatrix} 2 \\ 1 \\ 6 \end{bmatrix}\), one of the 2 possible maximally parallel steps (\(\{t_0 \times 2, t_1 , t_2\times 6\}\)).
Then \(\exists \alpha = \begin{bmatrix} \frac{6}{9}&\frac{4}{9}&0 \\ 0&\frac{5}{9}&\frac{3}{9} \\ 0&0&\frac{6}{9} \end{bmatrix}\), defined as in (14), s.t. \(\alpha \star m = {\begin{bmatrix} \frac{6}{9} \cdot 9 \cdot \frac{1}{3} \wedge \frac{4}{9} \cdot 9 \cdot \frac{1}{2} \wedge \infty \\ \infty \wedge \frac{5}{9} \cdot 9 \cdot \frac{1}{5} \wedge \frac{3}{9} \cdot 9 \cdot \frac{1}{3}\\ \infty \wedge \infty \wedge \frac{6}{9} \cdot 9 \cdot \frac{1}{1} \end{bmatrix}} = \begin{bmatrix} 2 \\ 1 \\ 6 \end{bmatrix} = v\).
By re-allocating the excess of species A to the first reaction, we get \(\alpha ' = \begin{bmatrix} 1&\frac{4}{9}&0 \\ 0&\frac{5}{9}&\frac{3}{9} \\ 0&0&\frac{6}{9} \end{bmatrix}\), a resource-allocation matrix that also verifies \(\alpha ' \star m = \begin{bmatrix} 1 \cdot 9 \cdot \frac{1}{3} \wedge \frac{4}{9} \cdot 9 \cdot \frac{1}{2} \wedge \infty \\ \infty \wedge \frac{5}{9} \cdot 9 \cdot \frac{1}{5} \wedge \frac{3}{9} \cdot 9 \cdot \frac{1}{3}\\ \infty \wedge \infty \wedge \frac{6}{9} \cdot 9 \cdot \frac{1}{1} \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 6 \end{bmatrix} = v\) (non-uniqueness of \(\alpha \) in the bimolecular case).
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Beica, A., Danos, V. (2016). Synchronous Balanced Analysis. In: Cinquemani, E., Donzé, A. (eds) Hybrid Systems Biology. HSB 2016. Lecture Notes in Computer Science(), vol 9957. Springer, Cham. https://doi.org/10.1007/978-3-319-47151-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-47151-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47150-1
Online ISBN: 978-3-319-47151-8
eBook Packages: Computer ScienceComputer Science (R0)