Skip to main content

Structure Fusion for Automatic Segmentation of Left Atrial Aneurysm Based on Deep Residual Networks

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10019))

Included in the following conference series:

  • 1999 Accesses

Abstract

Robust and accurate segmentation of the left atrial aneurysm serves as an essential role in the clinical practice. However, automatic segmentation is an extremely challenging task because of the huge shape variabilities of the aneurysm and its complex surroundings. In this paper, we propose a novel framework based on deep residual networks (DRN) for automatic segmentation of the left atrial aneurysm in CT images. Our proposed approach is able to make full use of structure information and adopts extremely deep architectures to learn more discriminative features, which enables more efficient and accurate segmentation. The main procedures of our proposed method are as follows: in the first step, a large-scale of pre-processed images are divided into patches as training units which then are used to train a classification model by DRN; in the second step, based on the trained DRN model, the left atrial aneurysm is segmented with a novel structured fusion algorithm. The proposed method for the first time achieves a fully automatic segmentation of left atrial aneurysm. With sufficient training datasets and test datasets, experimental results show that the proposed framework outperforms the state-of-the-art methods in terms of accuracy and relative error. The proposed method has also a high correlation to the ground truth, which demonstrates it is a promising techniques to left atrial aneurysm segmentation and other clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reddy, S., Ashwal, A., Padmakumar, R., Reddy, R., Rao, S.: An interesting and rare case of dextrocardia: asymptomatic left atrial aneurysm in an adult. Eur. J. Cardiovasc. Med. 3(1), 464–465 (2015)

    Google Scholar 

  2. Roth, H.R., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Liu, J., Turkbey, E., Summers, R.M.: A new 2.5 D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 520–527. Springer, Heidelberg (2014)

    Google Scholar 

  3. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40763-5_51

    Chapter  Google Scholar 

  4. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR 2015 (2015)

    Google Scholar 

  5. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)

  7. Chen, X., Xu, Y., Yan, S., Wong, D.W.K., Wong, T.Y., Liu, J.: Automatic feature learning for glaucoma detection based on deep learning. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 669–677. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24574-4_80

    Chapter  Google Scholar 

  8. Xie, Y., Kong, X., Xing, F., Liu, F., Su, H., Yang, L.: Deep voting: a robust approach toward nucleus localization in microscopy images. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 374–382. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China (Grant No. 61301010, 61327001, 61271336), the Natural Science Foundation of Fujian Province (Grant No. 2014J05080), Research Fund for the Doctoral Program of Higher Education (20130121120045) and by the Fundamental Research Funds for the Central Universities (Grant No. 2013SH005, 20720150110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhua Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Wang, L., Li, S., Chen, Y., Lin, J., Liu, C. (2016). Structure Fusion for Automatic Segmentation of Left Atrial Aneurysm Based on Deep Residual Networks. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, HI. (eds) Machine Learning in Medical Imaging. MLMI 2016. Lecture Notes in Computer Science(), vol 10019. Springer, Cham. https://doi.org/10.1007/978-3-319-47157-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47157-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47156-3

  • Online ISBN: 978-3-319-47157-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics