Skip to main content

Comparison of Multi-resolution Analysis Patterns for Texture Classification of Breast Tumors Based on DCE-MRI

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2016)

Abstract

Although Fourier and Wavelet Transform have been widely used for texture classification methods in medical images, the discrimination performance of FDCT has not been investigated so far in respect to breast cancer detection. Ιn this paper, three multi-resolution transforms, namely the Discrete Wavelet Transform (DWT), the Stationary Wavelet Transform (SWT) and the Fast Discrete Curvelet Transform (FDCT) were comparatively assessed with respect to their ability to discriminate between malignant and benign breast tumors in Dynamic Contrast-Enhanced Magnetic Resonance Images (DCE-MRI). The mean and entropy of the detail sub-images for each decomposition scheme were used as texture features, which were subsequently fed as input into several classifiers. FDCT features fed to a Linear Discriminant Analysis (LDA) classifier produced the highest overall classification performance (93.18 % Accuracy).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://www.breastcancer.org/symptoms/understand_bc/statistics

  2. Orel, S.G., Schnall, M.D.: MR imaging of the breast for the detection, diagnosis, and staging of breast cancer. Radiology 220, 13–30 (2001)

    Article  Google Scholar 

  3. Schnall, M.D., et al.: Diagnostic architectural and dynamic features at breast MR imaging: multicenter study. Radiology 238, 42–53 (2006)

    Article  Google Scholar 

  4. Gilhuijs, K.G.A., et al.: Computerized analysis of breast lesions in three dimensions using dynamic magnetic-resonance imaging. Med. Phys. 25, 1647–1654 (1998)

    Article  Google Scholar 

  5. Chen, W., Giger, M.L., Bick, U., Newstead, G.M.: Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI. Med. Phys. 33, 1076–1082 (2006)

    Google Scholar 

  6. Lee, S.H., et al.: Optimal clustering of kinetic patterns on malignant breast lesions: comparison between K-means clustering and three-time-points method in dynamic contrast-enhanced MRI. In: Engineering in Medicine and Biology Society (2007)

    Google Scholar 

  7. Gibbs, P., Turnbull, L.W.: Textural analysis of contrast-enhanced MR images of the breast. Magn. Reson. Med. 50, 92–98 (2003)

    Article  Google Scholar 

  8. Yao, J., Chen, J., Chow, C.: Breast tumor analysis in dynamic contrast enhanced MRI using texture features and wavelet transform. IEEE J. Sel. Top. Signal Process. 3(1), 94–100 (2009)

    Article  Google Scholar 

  9. Agner, S.C., et al.: Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification. J. Digit. Imaging 24(3), 446–463 (2010)

    Article  Google Scholar 

  10. Zheng, Y., et al.: STEP: spatiotemporal enhancement pattern for MR-based breast tumor diagnosis. Med. Phys. 36(7), 3192–3204 (2009)

    Article  Google Scholar 

  11. Gal, Y., Mehnert, A., Bradley, A., Kennedy, D., Crozier, S.: New spatiotemporal features for improved discrimination of benign and malignant lesions in dynamic contrast-enhanced magnetic resonance imaging of the breast. J. Comput. Assist. Tomogr. 35(5), 645–652 (2011)

    Article  Google Scholar 

  12. Tzalavra, A.G., Zacharaki, E.I., Tsiaparas, N.N., Constantinidis, F., Nikita, K.S.: A multiresolution analysis framework for breast tumor classification based on DCE-MRI. In: 2014 IEEE International Conference on Imaging Systems and Techniques (IST) Proceedings, pp. 246–250 (2014)

    Google Scholar 

  13. Twellmann, T., Lichte, O., Nattkemper, T.W.: An adaptive tissue characterization network for model-free visualization of dynamic contrast-enhanced magnetic resonance image data. IEEE Trans. Med. Imaging 24(10), 1256–1266 (2005)

    Article  Google Scholar 

  14. Mojsilovic, M., Popovic, M.V., Neskovic, A.N., Popovic, A.D.: Wavelet image extension for analysis and classification of infracted myocardial tissue. IEEE Trans. Biomed. Eng. 44(9), 856–866 (1997)

    Article  Google Scholar 

  15. Chen, D.R., Chang, R.F., Kuo, W.J., Chen, M.C., Huang, Y.L.: Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks. Ultrasound Med. Biol. 28(10), 1301–1310 (2002)

    Article  Google Scholar 

  16. Tsiaparas, N.N., Golemati, S., Andreadis, I., Stoitsis, J.S., Valavanis, I., Nikita, K.S.: Comparison of multiresolution features for texture classification of carotid atherosclerosis from B-Mode ultrasound. IEEE Trans. Inf Technol. Biomed. 15(11), 130–137 (2011)

    Article  Google Scholar 

  17. Tsiaparas, N.N., Golemati, S., Andreadis, I., Stoitsis, J., Valavanis, I., Nikita, K.S.: Assessment of carotid atherosclerosis from B-mode ultrasound images using directional multiscale texture features. Measur. Sci. Technol. 23(11), 114004 (2012)

    Article  Google Scholar 

  18. Mallat, S.: Theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  19. Furht, B.: Discrete Wavelet Transform (DWT). Encyclopedia of Multimedia. Springer, New York (2008)

    Book  Google Scholar 

  20. The Wavelet Tutorial, Part IV. http://users.rowan.edu/~polikar/WAVELETS/WTpart4.html

  21. Kumar, B.S., Nagaraj, S.: Discrete and stationary wavelet decomposition for IMAGE resolution enhancement. Int. J. Eng. Trends Technol. (IJETT) 4(7), 2885–2889 (2013)

    Google Scholar 

  22. Candès, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5(3), 861–899 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Candes, E.J., Donoho, D.L.: Curvelets, multiresolution representation, and scaling laws. In: SPIE Proceedings, vol. 4119 (2000)

    Google Scholar 

  24. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2011)

    Google Scholar 

  25. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, Reading (1984)

    Google Scholar 

  26. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston (1989)

    MATH  Google Scholar 

  27. Manning, C.D., Raghavan, P., Schuetze, H.: An Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  28. Hartigan, J.A.: Clustering Algorithms. Wiley, New York (1975)

    MATH  Google Scholar 

  29. Kohavi, R.: The power of decision tables. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS, vol. 912, pp. 174–189. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  30. Landwehr, N., Hall, M., Frank, E.: Logistic model trees. Mach. Learn. 95(1–2), 161–205 (2005)

    Article  MATH  Google Scholar 

  31. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  32. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, pp. 338–345 (1995)

    Google Scholar 

  33. Lachenbruch, P.A.: Discriminant Analysis. Hafner, New York (1975)

    MATH  Google Scholar 

  34. Zhan, T., Renping, Y., Zheng, Y., Zhan, Y., Xiao, L., Wei, Z.: Multimodal spatial-based segmentation framework for white matter lesions in multi-sequence magnetic resonance images. Biomed. Signal Process. Control 31, 52–62 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Sarah Englander and Dr. Mitchell Schnall from University of Pennsylvania, USA, who supported the collection of the data. It should also be noted that K. V. Dalakleidi was supported by a scholarship for Ph.D. studies from the Hellenic State Scholarships Foundation “IKY fellowships of excellence for post-graduate studies in Greece-Siemens Program”. This work has been partially supported from the European Research Council Grant 259112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexia Tzalavra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Tzalavra, A. et al. (2016). Comparison of Multi-resolution Analysis Patterns for Texture Classification of Breast Tumors Based on DCE-MRI. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, HI. (eds) Machine Learning in Medical Imaging. MLMI 2016. Lecture Notes in Computer Science(), vol 10019. Springer, Cham. https://doi.org/10.1007/978-3-319-47157-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47157-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47156-3

  • Online ISBN: 978-3-319-47157-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics