Abstract
Two common ways of approaching atlas-based segmentation of brain MRI are (1) intensity-based modelling and (2) multi-atlas label fusion. Intensity-based methods are robust to registration errors but need distinctive image appearances. Multi-atlas label fusion can identify anatomical correspondences with faint appearance cues, but needs a reasonable registration. We propose an ensemble segmentation method that combines the complementary features of both types of approaches. Our method uses the probabilistic estimates of the base methods to compute their optimal combination weights in a spatially varying way. We also propose an intensity-based method (to be used as base method) that offers a trade-off between invariance to registration errors and dependence on distinct appearances. Results show that sacrificing invariance to registration errors (up to a certain degree) improves the performance of our intensity-based method. Our proposed ensemble method outperforms the rest of participating methods in most of the structures of the NeoBrainS12 Challenge on neonatal brain segmentation. We achieve up to \(\sim \)10 % of improvement in some structures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Results should appear as “SIMBioSys_UPF” at http://neobrains12.isi.uu.nl/mainResults.php.
References
Anbeek, P., Isgum, I., van Kooij, B.J.M., Mol, C.P., Kersbergen, K.J., Groenendaal, F., Viergever, M.A., de Vries, L.S., Benders, M.J.N.L.: Automatic segmentation of eight tissue classes in neonatal brain MRI. PLoS ONE 8(12) (2013)
Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)
Avants, B.B., Tustison, N.J., Wu, J., Cook, P.A., Gee, J.C.: An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinformatics 9(4), 381–400 (2011)
Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940–954 (2011)
Isgum, I., Benders, M.J.N.L., Avants, B., Cardoso, M.J., Counsell, S.J., Gomez, E.F., Gui, L., Hüppi, P.S., Kersbergen, K.J., Makropoulos, A., Melbourne, A., Moeskops, P., Mol, C.P., Kuklisova-Murgasova, M., Rueckert, D., Schnabel, J.A., Srhoj-Egekher, V., Wu, J., Wang, S., de Vries, L.S., Viergever, M.A.: Evaluation of automatic neonatal brain segmentation algorithms: the neobrains12 challenge. Med. Image Anal. 20(1), 135–151 (2015)
Ledig, C., Heckemann, R.A., Hammers, A., Lopez, J.C., Newcombe, V.F.J., Makropoulos, A., Lötjönen, J., Menon, D.K., Rueckert, D.: Robust whole-brain segmentation: application to traumatic brain injury. Med. Image Anal. 21, 40–58 (2015)
Li, L., Hu, Q., Wu, X., Yu, D.: Exploration of classification confidence in ensemble learning. Pattern Recogn. 47, 3120–3131 (2014)
Makropoulos, A., Gousias, I.S., Ledig, C., Aljabar, P., Serag, A., Hajnal, J.H., Edwards, A.D., Counsell, S.J., Rueckert, D.: Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE TMI 33(9), 1818–1831 (2014)
Nyúl, L.G., Udupa, J.K.: On standardizing the MR image instensity scale. Magn. Reson. Med. 42(6), 1072–1081 (1999)
Sanroma, G., Benkarim, O.M., Piella, G., Wu, G., Zhu, X., Shen, D., Ballester, M.Á.G.: Discriminative dimensionality reduction for patch-based label fusion. In: Bhatia, K., et al. (eds.) MLMMI 2015. LNCS, vol. 9487, pp. 94–103. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27929-9_10
Shaji, R.A.A., Smith, K., Lucchi, A., Fua, P., Susstrünk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)
Wang, H., Suh, J.W., Das, S.R., Pluta, J.B., Craige, C., Yushkevich, P.A.: Multi-atlas segmentation with joint label fusion. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 611–623 (2013)
Worth, A.J.: The internet brain segmentation repository (ibsr)
Wu, T.F., Lin, C.J., Weng, R.C.: Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 5, 975–1005 (2004)
Acknowledgements
The first author is co-financed by the Marie Curie FP7-PEOPLE-2012-COFUND 462 Action. Grant agreement no: 600387.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Sanroma, G., Benkarim, O.M., Piella, G., Ballester, M.Á.G. (2016). Building an Ensemble of Complementary Segmentation Methods by Exploiting Probabilistic Estimates. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, HI. (eds) Machine Learning in Medical Imaging. MLMI 2016. Lecture Notes in Computer Science(), vol 10019. Springer, Cham. https://doi.org/10.1007/978-3-319-47157-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-47157-0_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-47156-3
Online ISBN: 978-3-319-47157-0
eBook Packages: Computer ScienceComputer Science (R0)