Skip to main content

Rhythmic Timing in Playful Human-Robot Social Motor Coordination

  • Conference paper
  • First Online:
Social Robotics (ICSR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9979))

Included in the following conference series:

Abstract

Future robots for everyday human environments will need to be capable of physical collaboration and play. We previously designed a robotic system for constant-tempo human-robot hand-clapping games. Since rhythmic timing is crucial in such interactions, we sought to endow our robot with the ability to speed up and slow down to match the human partner’s changing tempo. We tackled this goal by observing human-human entrainment, modeling human synchronization behaviors, and piloting three adaptive tempo behaviors on a Rethink Robotics Baxter Research Robot. The pilot study indicated that a fading memory difference learning timing model may perform best in future human-robot gameplay. We will use the findings of this study to improve our hand-clapping robotic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fitter, N.T., Kuchenbecker, K.J.: Equipping the Baxter robot with human-inspired hand-clapping skills. In: Accepted to the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (2016)

    Google Scholar 

  2. Iwata, H., Sugano, S.: Human-robot-contact-state identification based on tactile recognition. IEEE Trans. Ind. Electron. 52(6), 1468–1477 (2005)

    Article  Google Scholar 

  3. Argall, B.D., Billard, A.G.: A survey of tactile human-robot interactions. Robot. Auton. Syst. 58(10), 1159–1176 (2010)

    Article  Google Scholar 

  4. Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Robot. Auton. Syst. 42(3), 143–166 (2003)

    Article  MATH  Google Scholar 

  5. Feil-Seifer, D., Mataric, M.J.: Defining socially assistive robotics. In: IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 465–468 (2005)

    Google Scholar 

  6. Robins, B., Dautenhahn, K., Te, B., Boekhorst, R., Billard, A.: Robotic assistants in therapy and education of children with autism: can a small humanoid robot help encourage social interaction skills? Univers. Access Inf. Soci. 4(2), 105–120 (2005)

    Article  Google Scholar 

  7. Rabbitt, S.M., Kazdin, A.E., Scassellati, B.: Integrating socially assistive robotics into mental healthcare interventions: Applications and recommendations for expanded use. Clin. Psychol. Rev. 35, 35–46 (2015)

    Article  Google Scholar 

  8. Chen, T.L., King, C.H., Thomaz, A.L., Kemp, C.C.: Touched by a robot: An investigation of subjective responses to robot-initiated touch. In: ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 457–464 (2011)

    Google Scholar 

  9. Romano, J.M., Kuchenbecker, K.J.: Please do not touch the robot. In: Hands-on Demonstration Presented at IEEE/RJS Conference on Intelligent Robots and Systems (IROS) (2011)

    Google Scholar 

  10. Kosuge, K., Hayashi, T., Hirata, Y., Tobiyama, R.: Dance partner robot - Ms DanceR. IEEE/RJS Int. Conf. Intell. Robots Syst. 4, 3459–3464 (2003)

    Google Scholar 

  11. Nuñez, D., Tempest, M., Viola, E., Breazeal, C.: An initial discussion of timing considerations raised during development of a magician-robot interaction. In: ACM/IEEE International Conference on Human-Robot Interaction (HRI) Workshop on Timing in HRI (2014)

    Google Scholar 

  12. Kanda, T., Sato, R., Saiwaki, N., Ishiguro, H.: A two-month field trial in an elementary school for long-term human-robot interaction. IEEE Trans. Robot. 23(5), 962–971 (2007)

    Article  Google Scholar 

  13. Wang, Z., Yuan, J., Buss, M.: Modelling of human haptic skill: A framework and preliminary results. IFAC Proc. 41(2), 14761–14766 (2008)

    Article  Google Scholar 

  14. Avraham, G., Nisky, I., Fernandes, H.L., Acuna, D.E., Kording, K.P., Loeb, G.E., Karniel, A.: Toward perceiving robots as humans: Three handshake models face the Turing-like handshake test. IEEE Trans. Haptics 5(3), 196–207 (2012)

    Article  Google Scholar 

  15. Elliott, M.T., Chua, W.L., Wing, A.M.: Modelling single-person and multi-person event-based synchronisation. Current Opin. Behav. Sci. 8, 167–174 (2016)

    Article  Google Scholar 

  16. Repp, B.H., Keller, P.E., Jacoby, N.: Quantifying phase correction in sensorimotor synchronization: empirical comparison of three paradigms. Acta Psychol. 139(2), 281–290 (2012)

    Article  Google Scholar 

  17. Vorberg, D., Schulze, H.H.: Linear phase-correction in synchronization: Predictions, parameter estimation, and simulations. J. Math. Psychol. 46(1), 56–87 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Murata, K., Nakadai, K., Takeda, R., Okuno, H.G., Torii, T., Hasegawa, Y., Tsujino, H.: A beat-tracking robot for human-robot interaction and its evaluation. In: IEEE/RAS International Conference on Humanoid Robots (Humanoids), pp. 79–84 (2008)

    Google Scholar 

  19. Sato, T., Hashimoto, M., Tsukahara, M.: Synchronization based control using online design of dynamics and its application to human-robot interaction. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 652–657 (2007)

    Google Scholar 

  20. Pongas, D., Billard, A., Schaal, S.: Rapid synchronization and accurate phase-locking of rhythmic motor primitives. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2911–2916 (2005)

    Google Scholar 

  21. Metta, G., Sandini, G., Natale, L., Craighero, L., Fadiga, L.: Understanding mirror neurons: a bio-robotic approach. Interact. Stud. 7(2), 197–232 (2005)

    Google Scholar 

  22. Noy, L., Dekel, E., Alon, U.: The mirror game as a paradigm for studying the dynamics of two people improvising motion together. National Acad. Sci. 108(52), 20947–20952 (2011)

    Article  Google Scholar 

  23. Konvalinka, I., Vuust, P., Roepstorff, A., Frith, C.D.: Follow you, follow me: continuous mutual prediction and adaptation in joint tapping. Q. J. Exp. Psychol. 63(11), 2220–2230 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The first author was supported by a National Science Foundation (NSF) Graduate Research Fellowship under Grant No. DGE-0822 and the University of Pennsylvania’s NSF Integrative Graduate Education and Research Traineeship under Grant No. 0966142. We thank Kostas Daniilidis for the use of his Baxter robot and Saul Sternberg for his insights on related synchronization research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi T. Fitter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Fitter, N.T., Hawkes, D.T., Kuchenbecker, K.J. (2016). Rhythmic Timing in Playful Human-Robot Social Motor Coordination. In: Agah, A., Cabibihan, JJ., Howard, A., Salichs, M., He, H. (eds) Social Robotics. ICSR 2016. Lecture Notes in Computer Science(), vol 9979. Springer, Cham. https://doi.org/10.1007/978-3-319-47437-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47437-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47436-6

  • Online ISBN: 978-3-319-47437-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics